-
The action of the k-essence scalar field ϕ, minimally coupled to the background spacetime metric
$ g_{\mu\nu} $ is given by [73–77]$ \begin{equation} S_{k}[\phi,g_{\mu\nu}]= \int {\rm d}^{4}x {\sqrt -g} L(X,\phi), \end{equation} $
(1) where
$ X=\dfrac{1}{ 2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi $ .The energy-momentum tensor can be written as
$ \begin{equation} T_{\mu\nu}\equiv {2\over \sqrt {-g}}{\delta S_{k}\over \delta g^{\mu\nu}}= L_{X}\nabla_{\mu}\phi\nabla_{\nu}\phi - g_{\mu\nu}L, \end{equation} $
(2) where
$L_{ X}= {{\rm d}L/ {\rm d}X},\; L_{XX}= {{\rm d}^{2}L/ {\rm d}X^{2}},\; L_{\mathrm\phi}={{\rm d}L/ {\rm d}\phi}$ , and$ \nabla_{\mu} $ is the covariant derivative defined with respect to the gravitational metric$ g_{\mu\nu} $ .The equation of motion of the scalar field is
$ \begin{equation} -{1\over \sqrt {-g}}{\delta S_{k}\over \delta \phi}= \tilde G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi +2XL_{X\phi}-L_{\phi}=0, \end{equation} $
(3) where
$ \begin{equation} \tilde G^{\mu\nu}\equiv L_{X} g^{\mu\nu} + L_{XX} \nabla ^{\mu}\phi\nabla^{\nu}\phi \end{equation} $
(4) and
$1+ {(2X L_{XX})/ L_{X}} > 0$ .The conformal transformation gives
$ G^{\mu\nu}\equiv {(c_{s}/ L_{x}^{2})}\tilde G^{\mu\nu} $ , with$c_s^{2}(X,\phi)\equiv{(1+2X{(L_{XX}/L_{X}}))^{-1}}$ ; the inverse metric of$ G^{\mu\nu} $ takes the form$ \begin{equation} G_{\mu\nu}={L_{X}\over c_{s}}\left[g_{\mu\nu}-{c_{s}^{2}}{L_{XX}\over L_{X}}\nabla_{\mu}\phi\nabla_{\nu}\phi\right]. \end{equation} $
(5) Again, applying a conformal transformation [78, 79]
$\bar G_{\mu\nu}\equiv {(c_{s}/ L_{X})}G_{\mu\nu}$ , we get$ \begin{equation} \bar {G}_{\mu\nu} ={g_{\mu\nu}-{{L_{XX}}\over {L_{X}+2XL_{XX}}}\nabla_{\mu}\phi\nabla_{\nu}\phi}. \end{equation} $
(6) To make Eqs. (1)–(4) physically meaningful, we should have
$ L_{X}\neq 0 $ for$ c_{s}^{2} $ , which should be positive definite. If L does not directly depend on ϕ, the EOM (3) reduces to$ \begin{equation} -{1\over \sqrt {-g}}{\delta S_{k}\over \delta \phi} = \bar {G}^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi=0. \end{equation} $
(7) The Dirac-Born-Infeld (DBI) type Lagrangian [70–72, 78–80] has the form
$ \begin{equation} L(X,\phi)= 1-V(\phi)\sqrt{1-2X}, \end{equation} $
(8) with
$ V(\phi)=V= $ constant and a kinetic energy of$ \phi>>V $ , i.e.,$ (\dot\phi)^{2}>>V $ . This ensures the domination of the kinetic energy over the potential energy for the k-essence fields and gives us$ c_{s}^{2}(X,\phi)=1-2X $ . For scalar fields$ \nabla_{\mu}\phi=\partial_{\mu}\phi $ . Therefore, the effective emergent metric (6) ends up as$ \begin{equation} \bar{G}_{\mu\nu}= g_{\mu\nu} - \partial _{\mu}\phi\partial_{\nu}\phi. \end{equation} $
(9) The new Christoffel symbols and the old Christoffel symbols are related to each other [78, 94] as
$ \begin{equation} \bar\Gamma ^{\alpha}_{\mu\nu} =\Gamma ^{\alpha}_{\mu\nu} -\frac {1}{2(1-2X)}[\delta^{\alpha}_{\mu}\partial_{\nu}X + \delta^{\alpha}_{\nu}\partial_{\mu}X]. \end{equation} $
(10) Now, we can write the new geodesic equation for the k-essence theory in terms of the new Christoffel connections
$ \bar\Gamma $ as$ \begin{equation} \frac {{\rm d}^{2}x^{\alpha}}{{\rm d}\lambda^{2}} + \bar\Gamma ^{\alpha}_{\mu\nu}\frac {{\rm d}x^{\mu}}{{\rm d}\lambda}\frac {{\rm d}x^{\nu}}{{\rm d}\lambda}=0, \end{equation} $
(11) where
$ {\lambda} $ is an affine parameter. -
Inspired by the works of Magueijo et al. [1–4] as well as Kimberly et al. [5], the deformed energy-momentum dispersion relation can be provided as
$ \begin{equation} E^{2}{\cal{F}}^{2}({\cal{E}})-p^{2}{\cal{G}}^{2}({\cal{E}})=m^{2}, \end{equation} $
(12) where
${\cal{E}}=\dfrac{E}{E_{\rm P}}$ is the energy ratio, which is evidently a dimensionless quantity, E and p have been used to express the energy and momentum (respectively) of the test particle and$ E_{\rm P} $ is the Planck energy.The fact that the energy of a test particle cannot exceed the Plank energy gives us the limit of
$ {\cal{E}} $ as$ 0<{\cal{E}}\leq 1 $ . Therefore, the energy dependent rainbow functions$ \cal{F}({\cal{E}}) $ and$ \cal{G}({\cal{E}}) $ will satisfy the two conditions below:$ \begin{equation} \lim_{\cal{E}\rightarrow 0}\cal{F}(\cal{E})=1\; {\rm{and}}\; \lim\limits_{\cal{E}\rightarrow 0}\cal{G}(\cal{E})=1 \end{equation} $
(13) and the general relativity is recovered in the IR limit of the theory [95–101].
Again, the energy dependent contribution in the metric is given by
$ \begin{equation} g({\cal{E}})=\eta^{\mu\nu}e_{\mu}({\cal{E}})\otimes e_{\nu}({\cal{E}}), \end{equation} $
(14) with the energy dependence of the frame fields as follows:
$ e_{0}({\cal{E}})=({1}/{f({\cal{E}}))}\tilde{e}_{0} $ and$ e_{i}({\cal{E}})=({1}/{g({\cal{E}}))}\tilde{e}_{i} $ in the Planck length scale. Here,$ \tilde{e}_{0} $ and$ \tilde{e}_{i} $ are the energy independent frame fields.There are various possible choices for the rainbow functions [13, 14, 102, 103] such as, from the background motivation of loop quantum gravity and
$ \kappa- $ Minkowski noncommutative spacetime:$ \begin{equation} {\cal{F}}({\cal{E}})=1,\; \; \; \; {\cal{G}}({\cal{E}})=\sqrt{1-{\alpha}{\cal{E}}^{q}}, \end{equation} $
(15) where we can take the rainbow functions with the constant velocity of light [3] as
$ \begin{equation} {\cal{F}}({\cal{E}})={\cal{G}}({\cal{E}})=\frac{1}{1-{\alpha}{\cal{E}}}. \end{equation} $
(16) For the hard spectra from gamma-ray burster’s at cosmological distances, it is also possible to choose rainbow functions [104] as
$ \begin{equation} {\cal{F}}({\cal{E}})=\frac{{\rm e}^{{\alpha}{\cal{E}}}-1}{{\alpha}{\cal{E}}},\; \;\; \; {\cal{G}}({\cal{E}})=1. \end{equation} $
(17) Whatever the choice, the main properties of all these rainbow functions are spacetime energy dependent.
-
The 4-dimensional massive gravity action [14, 15, 105, 106] can be written as
$ \begin{equation} S=\int {\rm d}^{4}x\sqrt{-g}\Big[ {\cal{R}}+ {\mathbb{M}}^{2}\sum\limits_{i}^{4}c_{i}\cal{U}_{i}(g,f)+{\cal{L}}_{m}\Big], \end{equation} $
(18) f being a fixed symmetric tensor (also known as the reference metric),
$ c_{i} $ are constants,$ {\mathbb{M}} $ is the massive gravity parameter and$ \cal{U}_{i} $ are symmetric polynomials of the eigenvalues of the$ d\times d $ matrix$ {\cal{K}}^{\mu}_{\nu}=\sqrt{g^{\mu \alpha}f_{\alpha \nu}} $ .The symmetric polynomials, mentioned above, can be written as
$ \begin{aligned}[b] \cal{U}_{1}=&[{\cal{K}}],\\ \cal{U}_{2}=&[{\cal{K}}]^{2}-[{\cal{K}}^{2}],\\ \cal{U}_{3}=&[{\cal{K}}]^{3}-3[{\cal{K}}][{\cal{K}}^{2}]+2[{\cal{K}}^{3}],\\ \cal{U}_{4}=&[{\cal{K}}]^{4}-6[{\cal{K}}^{2}][{\cal{K}}]^{2}+8[{\cal{K}}^{3}][{\cal{K}}]+3[{\cal{K}}^{2}]^{2}-6[{\cal{K}}^{4}], \end{aligned} $
(19) where
$ \cal{K}=\cal{K}^{\mu}_{\mu} $ .With the help of the variational principle, the modified field equations for the massive gravity can be obtained as
$ \begin{equation} {\cal{R}}_{\mu\nu}-\frac{1}{2}{\cal{R}} g_{\mu\nu}+{\mathbb{M}}^{2}\chi_{\mu\nu}=T_{\mu\nu}. \end{equation} $
(20) Here,
$ \chi_{\mu\nu} $ denotes the massive term, which can be expressed as$ \begin{aligned}[b] \chi_{\mu\nu}=&-\frac{c_{1}}{2}\Big({\cal{U}}_{1}g_{\mu\nu}-{\cal{K}}_{\mu\nu}\Big)-\frac{c_{2}}{2}\Big({\cal{U}}_{2}g_{\mu\nu}-2{\cal{U}}_{1}{\cal{K}}_{\mu\nu}+2{\cal{K}}^{2}_{\mu\nu}\Big)\\&-\frac{c_{3}}{2}\Big({\cal{U}}_{3}g_{\mu\nu}-3{\cal{U}}_{2}{\cal{K}}_{\mu\nu}+6{\cal{U}}_{1}{\cal{K}}^{2}_{\mu\nu}-6{\cal{K}}^{3}_{\mu\nu}\Big) \end{aligned} $
$ \begin{aligned}[b] \quad\quad &-\frac{c_{4}}{2}\Big({\cal{U}}_{4}g_{\mu\nu}-4{\cal{U}}_{3}{\cal{K}}_{\mu\nu}+12{\cal{U}}_{2}{\cal{K}}^{2}_{\mu\nu}\\&-24{\cal{U}}_{1}{\cal{K}}^{3}_{\mu\nu}+24{\cal{K}}^{4}_{\mu\nu}\Big), \end{aligned} $
(21) considering
$ 8\pi G=1 $ in geometrized units.In their paper, Heydarzade et al. [15] took a spatial reference metric on the basis of
$ (v,r,\theta,\Phi) $ [14, 107, 108]$ \begin{equation} f_{\mu\nu}={\rm diag}(0,0,c^{2}h_{ij}), \end{equation} $
(22) in which
$ c^{2} $ is a positive constant and$ h_{ij} $ is the two dimensional Euclidean metric.We can write the barotropic relation and the energy-momentum tensor respectively as
$ \begin{equation} p=\kappa \rho, \end{equation} $
(23) $ \begin{equation} T_{\mu\nu}=T^{(n)}_{\mu\nu}+T^{(m)}_{\mu\nu}, \end{equation} $
(24) with
$ \begin{aligned}[b] T^{(n)}_{\mu\nu}=&\sigma l_{\mu}l_{\nu},\\ T^{(m)}_{\mu\nu}=&(\rho+p)(l_{\mu}n_{\nu}+l_{\nu}n_{\mu})+p\; {g}_{\mu\nu}. \end{aligned} $
(25) The terms
$ T^{(n)}_{\mu\nu} $ and$ T^{(m)}_{\mu\nu} $ in the above expression are the energy-momentum tensor for the Vaidya null radiation and the energy-momentum tensor of the perfect fluid, respectively. σ, ρ, and p denote the null radiation density, energy density, and pressure of the perfect fluid, respectively, and$ l_{\mu} $ and$ n_{\mu} $ are the two null vectors. These null vectors are defined as [15]:$ l_{\mu}=(1,0,0,0) $ ,$n_{\mu}= \left(\dfrac{1}{2}\left(1-\dfrac{m(v,r)}{r}\right),-1,0,0\right)$ with$ l_{\mu}l^{\mu}=n_{\mu}n^{\mu}=0 $ and$l_{\mu}n^{\mu}= -1$ .Taking the above assumptions into consideration, Heydarzade et al. [15] constructed the following metric for the Vaidya spacetime in massive gravity:
$ \begin{equation} {\rm d}s^{2}=-\Big(1-\frac{m(v,r)}{r}\Big){\rm d}v^{2}+2{\rm d}v\; {\rm d}r+r^{2}{\rm d}\Omega^{2}, \end{equation} $
(26) with
${\rm d}\Omega^{2}={\rm d}\theta^{2}+\sin^{2}\theta {\rm d}\Phi^{2}$ , and$ \begin{eqnarray} m(v,r)=\frac{r^{1-2\kappa}}{1-2\kappa}f_{1}(v)+f_{2}(v)-\frac{1}{2}\mathbb{M}^{2}c_{1}cr^{2}-\mathbb{M}^{2}c_{2}c^{2}r,\\ \end{eqnarray} $
(27) under the constraint
$ \kappa \neq \dfrac{1}{2} $ , where$ f_{1}(v) $ and$ f_{2}(v) $ are arbitrary functions of v and can be expressed as$ \begin{eqnarray} &&f_{1}(v)=\rho(v,r)r^{2(1+\kappa)};\; \; \; \sigma(v,r)=\frac{r^{-(1+2\kappa)}}{1-2\kappa}\dot{f}_{1}(v)+\frac{1}{r^{2}}\dot{f}_{2}(v), \end{eqnarray} $
(28) where a "dot" represents the derivative with respect to v. Here, v represents the null coordinate corresponding to the Eddington advanced time with r decreasing towards the future along a ray related to
$ v= $ constant.We can establish the following metric with the help of [15], considering the rainbow deformations of the Vaidya spacetime in massive gravity [14]
$ \begin{aligned}[b] {\rm d}s^{2}=&-\frac{1}{{\cal{F}}^{2}({\cal{E}})}\Bigg(1-\frac{m(v,r)}{r}\Bigg){\rm d}v^{2}\\&+\frac{2}{{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})}{\rm d}v{\rm d}r+\frac{1}{{\cal{G}}^{2}({\cal{E}})}r^{2}{\rm d}{\Omega}^{2}, \end{aligned} $
(29) with
$ \begin{aligned}[b] m(v,r)=&\frac{r^{1-2{\kappa}}}{1-2{\kappa}}f_{1}(v)+f_{2}(v)\\&-\frac{1}{2{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}c_{1}cr^{2}-{\mathbb{M}}^{2}c_{2}c^{2}r,\; \; \; \left(\kappa \neq\frac{1}{2}\right) \end{aligned} $
(30) and
$ \begin{aligned}[b] f_{1}(v)=&\frac{\rho(v,r)}{{\cal{G}}^{2}({\cal{E}})}r^{2(1+{\kappa})};\\ \sigma(v,r)=&{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})\Bigg[\frac{r^{-(1+2{\kappa})}}{1-2{\kappa}}\dot{f_{1}(v)}+\frac{1}{r^{2}}\dot{f_{2}(v)}\Bigg]. \end{aligned} $
(31) As expected, the mass function given in (30) is different from the mass function of Heydarzade et al. [ 14]
-
In this section, we discuss the k-essence Vaidya geometry in the context of massive gravity's rainbow. Manna et al. established the connection between the k-essence geometry and the Vaidya spacetime based on the DBI type action in [ 67, 69].
Therefore, let us assume the background metric to be the Vaidya massive gravity's rainbow (29) with the definitions (30) and (31).
The k-essence emergent line element can be written from Eq. (9)
$ \begin{equation} {\rm d}S^{2}={\rm d}s^{2}-{\partial}_{\mu}\phi{\partial}_{\nu}\phi {\rm d}x^{\mu}{\rm d}x^{\nu}. \end{equation} $
(32) Assuming the k-essence scalar field
$ \phi(x)=\phi(v) $ only, the emergent line element in the context of massive gravity's rainbow (32) can be written as$ \begin{aligned}[b] {\rm d}S^{2}=&-\Bigg[\frac{1}{{\cal{F}}^{2}({\cal{E}})}\Bigg(1-\frac{m(v,r)}{r}\Bigg)-\phi_{v}^{2}\Bigg]{\rm d}v^{2}\\&+\frac{2}{{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})}{\rm d}v{\rm d}r+\frac{1}{{\cal{G}}^{2}({\cal{E}})}r^{2}{\rm d}{\Omega}^{2}, \end{aligned} $
(33) which can also be represented as [ 69]:
$ \begin{aligned}[b] {\rm d}S^{2}=&-\frac{1}{{\cal{F}}^{2}({\cal{E}})}\Big(1-\frac{{\cal{M}}(v,r)}{r}\Big){\rm d}v^{2}+\frac{2}{{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})}{\rm d}v{\rm d}r\\&+\frac{1}{{\cal{G}}^{2}({\cal{E}})}r^{2}{\rm d}\Omega^{2}. \end{aligned} $
(34) Here, we define the k-essence emergent Vaidya massive gravity's rainbow mass function as
$ \begin{aligned}[b] {\cal{M}}(v,r)=&m(v,r)+r{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\\ =&\frac{r^{1-2{\kappa}}}{1-2{\kappa}}f_{1}(v)+f_{2}(v)-\frac{1}{2{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}c_{1}cr^{2}\\&-{\mathbb{M}}^{2}c_{2}c^{2}r+r{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2},\; \; \; \; \left({\kappa}\neq\frac{1}{2}\right), \end{aligned} $
(35) where
$ \phi_{v}^{2} $ ($ \phi_{v}=\dfrac{{\partial}\phi}{{\partial} v} $ ) is the kinetic energy of the scalar field ϕ, which should not be equal to zero.For a well-defined signature of the above metric (33), the values of
$ \phi_{v}^{2} $ should lie between$ 0 $ and$ 1 $ , i.e.,$ 0<\phi_{v}^{2}<1 $ . Because, in general, spherical symmetry would only require that$ \phi=\phi(v,r) $ , the k-essence scalar field ϕ actually violates local Lorentz invariance. The choice of$ \phi(v,r)=\phi(v) $ additionally implies that outside of this particular choice of frame, a spherically symmetric ϕ is actually a function of both v and r. Because the dynamical solutions of the k-essence equation of motion spontaneously break Lorentz invariance and also change the metric for the perturbations around these solutions, the k-essence theory allows us to use this type of Lorentz violation. Also, notice that the choice of$ \phi(v,r)\; (=\phi(v)) $ is equally important in the context of cosmology and gravitation [67–69, 86, 87].Using the following definitions
$ \begin{aligned}[b] {\cal{M}}_{v}=&\dot{{\cal{M}}}(v,r)\equiv \frac{{\partial}{\cal{M}}(v,r)}{{\partial} v},\\ {\cal{M}}_{r}=&{\cal{M}}^{'}(v,r)\equiv\frac{{\partial}{\cal{M}}(v,r)}{{\partial} r}, \end{aligned} $
(36) the non-zero components of the emergent Ricci tensors can be represented as
$ \begin{aligned}[b] \bar{R}^{v}_{v}=&\bar{R}^{r}_{r}=\frac{{\cal{G}}^{2}({\cal{E}})}{2r}{\cal{M}}_{rr}=\frac{{\cal{G}}^{2}({\cal{E}})}{2r}m_{rr}\; ;\; \\ \bar{R}^{{\theta}}_{{\theta}}=&\bar{R}^{{\Phi}}_{{\Phi}}=\frac{{\cal{G}}^{2}({\cal{E}})}{r^{2}}{\cal{M}}_{r}=\frac{{\cal{G}}^{2}({\cal{E}})}{r^{2}}(m_{r}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}). \end{aligned} $
(37) Also, the Ricci scalar is given by
$ \begin{aligned}[b] \bar{R}=&\frac{{\cal{G}}^{2}({\cal{E}})}{r}{\cal{M}}_{rr} +\frac{2{\cal{G}}^{2}({\cal{E}})}{r^{2}}{\cal{M}}_{r}=\frac{{\cal{G}}^{2}({\cal{E}})}{r}m_{rr} \\&+\frac{2{\cal{G}}^{2}({\cal{E}})}{r^{2}}(m_{r}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}). \end{aligned} $
(38) The non-vanishing components of the Einstein tensor are
$ \begin{aligned}[b] {\mathbb{G}}^{v}_{v}=&{\mathbb{G}}^{r}_{r}=-\frac{{\cal{G}}^{2}({\cal{E}}){\cal{M}}_{r}}{r^{2}}=-\frac{{\cal{G}}^{2}({\cal{E}})}{r^{2}}\Big(m_{r}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Big)\; ,\; \\ {\mathbb{G}}^{r}_{v}=&\frac{{\cal{G}}^{2}({\cal{E}})}{r^{2}}{\cal{M}}_{v}=\frac{{\cal{G}}^{2}({\cal{E}})}{r^{2}}\Big(m_{v}+2r{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}\Big)\; ,\; \\ {\mathbb{G}}^{{\theta}}_{{\theta}}=&{\mathbb{G}}^{{\Phi}}_{{\Phi}}=-\frac{{\cal{G}}^{2}({\cal{E}})}{2r}{\cal{M}}_{rr}=-\frac{{\cal{G}}^{2}({\cal{E}})}{2r}m_{rr}, \end{aligned} $
(39) where from Eq. (35), we have
$ \begin{eqnarray} {\cal{M}}_{r}=f_{1}(v)r^{-2{\kappa}}-\frac{1}{{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}c_{1}cr-{\mathbb{M}}^{2}c_{2}c^{2}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}, \end{eqnarray} $
(40) $ \begin{eqnarray} {\cal{M}}_{v}=\frac{r^{1-2{\kappa}}}{1-2{\kappa}}\dot{f_{1}(v)}+\dot{f_{2}(v)}+2r{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}, \end{eqnarray} $
(41) $ \begin{eqnarray} {\cal{M}}_{rr}=-2{\kappa} r^{-(1+2{\kappa})}f_{1}(v)-\frac{1}{{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}c_{1}c. \end{eqnarray} $
(42) The k-essence emergent Einstein equation is
$ \begin{equation} {\mathbb{G}}^{\mu}_{\nu} = {\cal T}^{\mu}_{\nu}. \end{equation} $
(43) If we consider
$ 8\pi G=1 $ , it immediately leads us to the components$ {\cal T}^{\mu}_{ \nu} $ , which can be parametrized exactly as in Refs. [59, 61, 62,69] in terms of the components$ \sigma, \rho $ , and p given by$ \begin{eqnarray} {\cal T}_{\mu\nu}={\cal T}_{\mu\nu}^{(n)} + {\cal T}_{\mu\nu}^{(m)}= \left[\begin{array}{cccc} (\sigma/2+{\rho}) & \sigma/2 & 0 & 0 \\ \sigma/2 & (\sigma/2-{\rho}) & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{array}\right], \end{eqnarray} $
(44) where
$ {\cal T}_{\mu\nu}^{(n)}=\sigma l_{\mu}l_{\nu} $ ;$ {\cal T}_{\mu\nu}^{(m)}=({\rho}+p)(l_{\mu}n_{\nu}+l_{\nu}n_{\mu})+p\bar{G}_{\mu\nu} $ with$ l_{\mu} $ and$ n_{\mu} $ being two null vectors. Any doubt in using the perfect fluid energy-momentum tensor for the k-essence theory can be erased by the form of the Lagrangian$ L(X) = 1-V\sqrt{1-2X} $ , where V is a constant and does not explicitly depend on ϕ. This class of models can be thought of as equivalent to perfect fluid models with zero vorticity and the pressure (Lagrangian) can be expressed through the energy density only [77].Therefore, the three independent components are expressed as
$ \begin{eqnarray} \sigma =\frac{{\cal{G}}^{2}({\cal{E}})}{ r^{2}}{\cal{M}}_{v}=\frac{{\cal{G}}^{2}({\cal{E}})}{ r^{2}}\Big(m_{v}+2r{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}\Big), \end{eqnarray} $
(45) $ \begin{eqnarray} {\rho}=\frac{{\cal{G}}^{2}({\cal{E}})}{ r^{2}}{\cal{M}}_{r}= \frac{{\cal{G}}^{2}({\cal{E}})}{ r^{2}}\Big(m_{r}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Big), \end{eqnarray} $
(46) $ \begin{eqnarray} {\Sigma} = -\frac{{\cal{G}}^{2}({\cal{E}})}{ 2r}{\cal{M}}_{rr}=-\frac{{\cal{G}}^{2}({\cal{E}})}{ 2r}m_{rr}. \end{eqnarray} $
(47) The energy conditions for the combination of the Type-I and Type-II matter field energy momentum tensor
$ {\cal T}_{\mu\nu} $ , are defined [69, 109] as follows:(a) The weak and strong energy conditions:
$ \begin{equation} \sigma\geq0\; ,\; \rho\geq0\; ,\; p\geq0\; \; \; (\sigma\neq0). \end{equation} $
(48) (b) The dominant energy conditions:
$ \begin{equation} \sigma\geq0\; ,\; \rho\geq p\geq0 \; \; \; \; \; (\sigma\neq0). \end{equation} $
(49) Therefore, the above energy conditions (48) and (49), imposed on
$ {\cal T}_{\mu \nu} $ , will be constrained in$ m(v,r) $ and$ \phi(v) $ and their derivatives. Thus,$ \begin{aligned}[b] \sigma > 0 \Rightarrow & m_{v}+2r\phi_v \phi_{vv} > 0\\\Rightarrow & \frac{r^{1-2\kappa}}{1-2\kappa}\dot{f_{1}(v)}+\dot{f_{2}(v)}+2r{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}>0, \end{aligned} $
(50) $ \begin{aligned}[b] {\rho} > 0 \Rightarrow & m_{r}+\phi_{v}^{2}>0 \Rightarrow f_{1}(v)r^{-2{\kappa}}\\&-\frac{1}{{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}c_{1}cr-{\mathbb{M}}^{2}c_{2}c^{2}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}>0,\; \; \end{aligned} $
(51) $ \begin{eqnarray} p>0 \Rightarrow m_{rr} < 0 \Rightarrow 2\kappa f_{1}(v)r^{-(1+2\kappa)}+{\mathbb{M}}^{2}c_{1}c>0.\; \; \; \end{eqnarray} $
(52) -
Now, let us cultivate the collapsing scenario of the k-essence emergent Vaidya spacetime in the context of the massive gravity's rainbow. At the beginning, we define
$ K^{\mu} $ as the tangent to non-spacelike geodesics with$ K^{\mu}=\dfrac{{\rm d}x^{\mu}}{{\rm d}{\lambda}} $ , where$ {\lambda} $ is the affine parameter. The geodesic equation takes the form [62, 69]$ \begin{equation} \bar{G}_{\mu\nu}K^{\mu}K^{\nu}={\beta}, \end{equation} $
(53) where
$ {\beta} $ is a constant. Here,$ {\beta}=0 $ and$ {\beta}<0 $ describe the null geodesics and the timelike geodesics, respectively.Expressing the k-essence emergent geodesic equation (11) in terms of
$ K^{\mu} $ , we get$ \begin{equation} \frac{{\rm d}K^{\alpha}}{{\rm d}\lambda}+\bar\Gamma ^{\alpha}_{\mu\nu}K^{\mu}K^{\nu}=0. \end{equation} $
(54) Now, using Eqs. (34), (53), and (54), we get the geodesic equations [53, 62, 69] in the form
$ \begin{aligned}[b] &\frac{{\rm d}K^{v}}{{\rm d}{\lambda}}+\frac{{\cal{G}}({\cal{E}})}{2{\cal{F}}({\cal{E}})}\Bigg[\frac{{\cal{M}}}{r^{2}}-\frac{{\cal{M}}_{r}}{r}\Bigg](K^{v})^{2}- r\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}\Big[(K^{{\theta}})^{2}+\sin^{2}{\theta}(K^{{\Phi}})^{2}\Big]=0\\ \Rightarrow & \frac{{\rm d}K^{v}}{{\rm d}{\lambda}}+\frac{{\cal{G}}({\cal{E}})}{2{\cal{F}}({\cal{E}})}\Bigg[\frac{m}{r^{2}}-\frac{m_{r}}{r}\Bigg](K^{v})^{2}-\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}\frac{l^{2}}{r^{3}}=0,\; \end{aligned} $ (55) $ \begin{aligned}[b] &\frac{{\rm d}K^{r}}{{\rm d}{\lambda}}+\frac{{\cal{G}}({\cal{E}})}{2{\cal{F}}({\cal{E}})}\frac{{\cal{M}}_{v}}{r}(K^{v})^{2}-\frac{{\cal{G}}^{2}({\cal{E}})}{2}\Bigg[\frac{{\cal{M}}}{r^{2}}-\frac{{\cal{M}}_{r}}{r}\Bigg]\times \Bigg[-\frac{1}{{\cal{F}}^{2}({\cal{E}})}\Bigg(1-\frac{{\cal{M}}}{r}\Bigg)(K^{v})^{2}+\frac{K^{r}K^{v}}{{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})}\Bigg]\\&-\Bigg(1-\frac{{\cal{M}}}{r}\Bigg)r\Big[(K^{{\theta}})^{2}+\sin^{2}{\theta}(K^{{\Phi}})^{2}\Big]=0\\ \Rightarrow & \frac{{\rm d}K^{r}}{{\rm d}{\lambda}}+\frac{{\cal{G}}({\cal{E}})}{2{\cal{F}}({\cal{E}})}\Bigg(\frac{m_{v}}{r}+2{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}\Bigg)(K^{v})^{2}-\frac{l^{2}}{r^{3}}\Bigg(1-\frac{m}{r}-{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Bigg)-\frac{1}{2}{\beta}{\cal{G}}^{2}({\cal{E}})\Bigg(\frac{m}{r^{2}}-\frac{m_{r}}{r}\Bigg)=0\; , \end{aligned} $
(56) $ \begin{eqnarray} &&\frac{{\rm d}K^{{\theta}}}{{\rm d}{\lambda}}+\frac{2}{r}K^{{\theta}}K^{r}-\sin{\theta}\; \cos{\theta}(K^{{\Phi}})^{2}=0, \end{eqnarray} $
(57) $ \begin{eqnarray} &&\frac{{\rm d}}{{\rm d}{\lambda}}(r^{2}\sin^{2}{\theta} K^{{\Phi}})=0, \end{eqnarray} $
(58) where we use the relation [53, 69]
$ \begin{eqnarray} K^{{\Phi}}=\frac{l\cos{\delta}}{r^{2}\sin^{2}{\theta}}\; \; ,\; \; K^{{\theta}}=\frac{l}{r^{2}}\sin{\delta} \cos{\Phi}, \end{eqnarray} $
(59) where l and
$ {\delta} $ are constants of integration, which represent the impact parameter and the isotropy parameter, respectively, satisfying the relation$ \sin \Phi \; \tan{\delta}=\cot{\theta} $ .The definition of
$ K^{v} $ [53, 62] gives us$ \begin{eqnarray} K^{v}=\frac{P(v,r)}{r} \end{eqnarray} $
(60) and the relation
$ \bar{G}_{\mu\nu}K^{\mu}K^{\nu}={\beta} $ provides$ \begin{aligned}[b] K^{r}=&\frac{P}{2r}\frac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\Big(1-\frac{m}{r}-{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Big)-\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}\frac{l^{2}}{2Pr}\\&+{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})\frac{{\beta} r}{2P}, \end{aligned} $
(61) where
$ P(v,r) $ is an arbitrary function.Next, differenting Eq. (60) with respect to
$ {\lambda} $ , we get$ \begin{aligned}[b] \frac{{\rm d}P}{{\rm d}{\lambda}} =& \frac{1}{r}\Bigg(r^{2}\frac{{\rm d}K^{v}}{{\rm d}{\lambda}}+P\frac{{\rm d}r}{{\rm d}{\lambda}}\Bigg)\\ =& \frac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\frac{P^{2}}{2r^{2}}\Bigg(1-\frac{2m}{r}+m_{r}\Bigg)+\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}\frac{l^{2}}{2r^{2}}\\&+{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})\frac{{\beta}}{2}-\frac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\frac{P^{2}}{2r^{2}}{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}. \end{aligned} $
(62) After this, we examine the destiny of the collapse, whether it ends with a black hole or a naked singularity for the given k-essence emergent Vaidya massive gravity rainbow mass function (35). If there exist some families of future directed non-spacelike trajectories, which terminate in the past at a singularity and reach faraway observers in spacetime, a naked singularity forms as the final state of the collapse. On the flip side, if no such families exist and an event horizon forms sufficiently early to cover the singularity, we have a black hole.
The radial null geodesic
$ (l=0,\; \beta=0) $ can be achieved using Eqs. (60) and (61) as$ \begin{aligned}[b] \frac{{\rm d}v}{{\rm d}r}=&\frac{2r{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})\Big(r-m(v,r)-r{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Big)}\\\equiv&\frac{2{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})\Bigg(1-\dfrac{{\cal{M}}(v,r)}{r}\Bigg)}. \end{aligned} $
(63) For a suitable choice of rainbow functions, there is a singularity at
$ r=0,\; v=0 $ , provided$ \phi_{v}^{2}\neq 0 $ . -
In general, the above Eq. (63) can be written as [62, 69]
$ \begin{equation} \frac{{\rm d}v}{{\rm d}r}=\frac{M(v,r)}{N(v,r)}, \end{equation} $
(64) with the singular points
$ r=0,\; v=0 $ , where both the above functions$ M(v,r) $ and$ N(v,r) $ vanish.As discussed in [62], we can also have the characteristic equation for the existence and uniqueness of the above form of the differential equation (64) in the vicinity of the singularity as
$ \begin{equation} \chi^{2}-(A+D)\chi +AD-BC=0, \end{equation} $
(65) where
$ A=M_{v}(0,0) ,\; B=M_{r}(0,0) ,\; C=N_{v}(0,0) ,\; D=N_{r}(0,0) $ and$ AD-BC\neq 0 $ .The roots of the above Eq. (65) are
$ \begin{equation} \chi=\frac{1}{2}\Big[(A+D)\pm \sqrt{(A-D)^{2}+4BC}\Big]. \end{equation} $
(66) The singularity can be of two types; the first one is a node, if
$ (A-D)^{2}+4BC\geq 0 $ and$ BC>0 $ , and the second one is a center or focus.Comparing Eqs. (63) and (64), we have
$ \begin{aligned}[b] M(v,r) =& 2r{\cal{F}}({\cal{E}}),\\ N(v,r) =& {\cal{G}}({\cal{E}})\Big(r-{\cal{M}}(v,r)\Big)\\ =& {\cal{G}}({\cal{E}})\Big(r-m(v,r)-r{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Big). \end{aligned} $
(67) At the central singularity (
$ v=0, r=0 $ ), we define$ \begin{aligned}[b] {\cal{M}}_{0} =& \lim\limits_{v\to 0, r \to 0}{\cal{M}}(v,r)\; ;\;\;\; {\cal{M}}_{v0} = \lim\limits_{v\to 0, r \to 0}\frac{{\partial}}{{\partial} v}{\cal{M}}(v,r)\; ;\; \\ {\cal{M}}_{r0} =& \lim\limits_{v\to 0, r \to 0}\frac{{\partial}}{{\partial} r}{\cal{M}}(v,r)\; ;\;\;\; \phi_{v0} = \lim\limits_{v\to 0, r \to 0}\frac{{\partial}}{{\partial} v}\phi(v)\; ;\; \\ m_{v0} =& \lim\limits_{v\to 0, r \to 0}\frac{{\partial}}{{\partial} v}m(v,r)\; ;\;\;\; m_{r0} = \lim\limits_{v\to 0, r \to 0}\frac{{\partial}}{{\partial} r}m(v,r). \end{aligned} $
(68) Using Eqs. (67) and (68), we get
$ A=0,\; B= 2{\cal{F}}({\cal{E}}),\; C=-{\cal{G}}({\cal{E}})m_{v0}\; and \; D={\cal{G}}({\cal{E}})\Big(1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big) $ . Hence, roots of the characteristic Eq. (65) can be written as:$ \begin{aligned}[b] \chi=\frac{1}{2}\Bigg[{\cal{G}}({\cal{E}})\Big(1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big) \end{aligned} $
$ \begin{aligned}[b] \pm \sqrt{{\cal{G}}^{2}({\cal{E}})\Big(1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big)^{2}-8{\cal{F}}({\cal{E}}){\cal{G}}({\cal{E}})m_{v0}}\Bigg]. \end{aligned} $
(69) The required conditions for the singular point at
$ r=0,\; v=0 $ to be a node are$ \begin{eqnarray} {\cal{G}}({\cal{E}})\Big(1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big)^{2}\geq8{\cal{F}}({\cal{E}})m_{v0},\; m_{v0}>0\; and\; \phi_{v0}^{2}>0. \end{eqnarray} $
(70) Therefore, to satisfy the condition (70), the k-essence emergent Vaidya massive gravity rainbow mass function
$ {\cal{M}}(v,r) $ and the rainbow functions ($ {\cal{F}}({\cal{E}})\; and\; {\cal{G}}({\cal{E}}) $ ) can be chosen in a certain way and then, the singularity at the origin$ (v=0, r=0) $ will be a node resulting in the outgoing non-spacelike geodesics coming out of the singularity with a definite value of the tangent.The null geodesic equation can be linearized near the central singularity using the limits (68) as
$ \begin{equation} \frac{{\rm d}v}{{\rm d}r}=\frac{2r{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})\Big[(1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})r-m_{v0}v\Big]}, \end{equation} $
(71) which is also singular at
$ v=0,\; r=0 $ provided$ \phi_{v}^{2}\neq 0 $ . From (35), we get$ \begin{equation} m_{r0}=-{\mathbb{M}}^{2}c_{2}c^{2};\;\;\;\; m_{v0}=\frac{{\partial} f_{2}(v)}{{\partial} v}\Big{|}_{0}\equiv \dot{f_{20}(v)}. \end{equation} $
(72) -
The summary up to now is that the outgoing radial null geodesics have to end up in the past at a singularity, particularly, in the central physical singularity located at
$ v=0,\; r = 0 $ . With the help of this remark, we will now explore the existence of a naked singularity (NS) in the k-essence emergent Vaidya spacetime in the massive gravity rainbow. For a locally naked singularity, such null geodesics exist. The possibility of this singularity to be either a naked singularity or a black hole (BH) implies that if the singularity is not a naked singularity, then the formation of a black hole is undoubtable. So, the analysis of the radial null geodesics emerging from the singularity can help us understand the nature of such a singularity, which can be established by a catastrophic gravitational collapse.It is well-known in general relativity that such a singularity, which comes from a gravitational collapse, is always a black hole because of the cosmic censorship in general relativity. Therefore, there will be an event horizon by which the singularity is always covered in general relativity. Regarding the generalized case, it is possible for inhomogeneous dust clouds to form a naked singularity through collapse [110]. Also, it is noted that some interesting results have been obtained for fluids whose equations of state (EOS) are not exactly similar to that of a dust cloud [111]. Thus, the generalization of the cosmic censorship becomes evident in general relativity [112].
Let us now consider that, the k-essence emergent Vaidya massive gravity mass function
$ {\cal{M}}(v,r) $ with acceptable choices of rainbow functions satisfies all physical energy conditions (48) and (49) with constraints (50), (51), and (52). The partial derivatives of the mass function, which are continuous in the entire k-essence emergent Vaidya massive gravity's rainbow spacetime (35) also exist and obey the conditions (70) at the central singularity. Following Refs. [14, 15, 62, 63, 69], we now determine the nature (a black hole or a naked singularity) of the collapsing solutions. To do this, we consider the function X behaving as$ X =\dfrac{v}{r} $ and having the limiting value at the central singularity as follows:$ \begin{equation} X_{0}=\lim\limits_{v\to 0, r \to 0}X=\lim\limits_{v\to 0, r \to 0}\frac{v}{r}. \end{equation} $
(73) Using Eqs. (63), (73), and L'Hospital's rule, we get
$ \begin{eqnarray} X_{0}&&=\lim\limits_{v\to 0, r \to 0}\frac{v}{r}=\lim\limits_{v\to 0, r \to 0}\frac{dv}{dr}=\lim\limits_{v\to 0, r \to 0}\frac{2{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})\Big(1-\frac{{\cal{M}}(v,r)}{r}\Big)}. \end{eqnarray} $
(74) Again using (35), the above Eq. (74) can be written as
$ \begin{aligned}[]b \frac{2}{X_{0}}=&\lim\limits_{v\to 0, r \to 0}\frac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\Bigg[1-\frac{r^{-2{\kappa}}}{1-2{\kappa}}f_{1}(v)-\frac{f_{2}(v)}{r}\\& + \frac{1}{2{\cal{G}}({\cal{E}})}{\mathbb{M}}^{2}cc_{1}r+{\mathbb{M}}^{2}c^{2}c_{2} -{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}\Bigg], \end{aligned} $
(75) under the constraint
$ {\kappa} \neq \dfrac{1}{2} $ .Now, considering
$ f_{1}(v)={\alpha} v^{2{\kappa}} $ and$ f_{2}(v)={\beta} v $ , the algebraic equation of$ X_{0} $ can be expressed as$ \begin{eqnarray} \frac{{\alpha}}{1-2{\kappa}}X_{0}^{1+2{\kappa}} + {\beta} X_{0}^{2} - \Big(1+{\mathbb{M}}^{2}c^{2}c_{2} - {\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big)X_{0} + 2\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}=0,\; \; \; \; \; \; \; \; \end{eqnarray} $
(76) where
$ {\alpha} $ and$ {\beta} $ are constants.As mentioned before, Eq. (76) is not similar to Eq. (3.7) of Heydarzade et al. [15] due to the presence of the terms
$ \phi_{v0}^{2} $ and the rainbow functions. But we choose the same functions of$ f_{1}(v) $ and$ f_{2}(v) $ as in [15] along with the same characteristics. In the early universe ($ {\kappa} \geq0 $ ),$ f_{1}(v) $ grows with v, whereas in the late universe ($ {\kappa} < 0 $ ),$ f_{1}(v) $ decays with time. In contrast,$ f_{2}(v) $ is a linear function of v. These choices of the arbitrary functions$ f_{1}(v) $ and$ f_{2}(v) $ are self-similar in nature and this comes from the definition of$ X_{0} $ given in Eq. (74). For the same reasons as shown by Heydarzade et al. [15], we also consider self-similar cases.The formation of a black hole can be assured in this system by achieving a non-positive solution of the above Eq. (76). However, the positive roots of this equation can produce a naked singularity. With the specific choice of the rainbow functions, we will examine the effects of the mass term and kinetic energy of the k-essence scalar field (
$ \phi_{v0}^{2} $ ) on the formation of a naked singularity and observe the effect of a mass term and$ \phi_{v0}^{2} $ on the formation of naked singularities. For this purpose, we choose a specific rainbow function [14, 104, 113] as$ \begin{equation} {\cal{F}}({\cal{E}})=1,\; {\cal{G}}({\cal{E}})=\sqrt{1-\eta \Bigg(\frac{E_{1}}{E_{p}}\Bigg)}. \end{equation} $
(77) In the above expressions, we have denoted Planck energy by
$ E_{p} $ , given by$ E_{p}=1/\sqrt{G}=1.221\times 10^{19} $ GeV, where G denotes the gravitational constant and$ E_{1}= 1.42\times 10^{-13} $ [14, 104, 113]. In [14, 104], the authors estimated the value of η as$ \eta\approx 1 $ . Therefore, in our study we use$ \eta=1 $ . It is very cumbersome to find exact solutions for$ X_{0} $ , except for some particular values. Therefore, for some preferable values we find the exact solutions as:Case-I:
$ {\kappa}=0 $ : The zero value of$ {\kappa} $ represents the pressure-less dust regime of the universe. For this regime, Eq. (76) reduces to$ \begin{equation} {\alpha} X_{0}+\beta X_{0}^{2}-\Big(1+{\mathbb{M}}^{2}c^{2}c_{2}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}\Big)X_{0}+2\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}=0, \end{equation} $
(78) and the solutions become
$ \begin{aligned}[b] X_{0\pm}=&\frac{\Big(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-{\alpha}\Big)}{2{\beta}} \\&\pm\frac{\sqrt{(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)^{2}-8{\beta}{\cal{F}}({\cal{E}})/{\cal{G}}({\cal{E}})}}{2{\beta}}\; \; \; \end{aligned} $
(79) with
$ U=1+{\mathbb{M}}^{2}c_{2}c^{2} $ .For these two solutions to be real and finite, we must have
$ {\beta}\neq 0 $ and$ {\cal{G}}({\cal{E}})(U+{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)^{2} \geq 8\beta{\cal{F}}({\cal{E}}) $ . In our case, the values of$ \phi_{v0}^{2} $ are$ 0<\phi_{v0}^{2}<1 $ , i.e., positive and the rainbow functions (77) are also positive.To make the solution
$ X_{0+} $ positive, we have the following conditions:(i)
$ \beta>0:\; (U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)\geq -\sqrt{(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-{\alpha})^{2}-8\beta{\cal{F}}({\cal{E}})/{\cal{G}}({\cal{E}})} \; \Rightarrow\; \beta\geq 0 .$ However, if the solutions are real and finite, with
$ {\beta}\neq 0 $ , the solution$ X_{0+} $ is positive for any positive$ {\beta} $ .(ii)
$ \beta<0:\; \; \; (U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)\leq -\sqrt{(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)^{2}-8\beta{\cal{F}}({\cal{E}})/{\cal{G}}({\cal{E}})} \; \; \Rightarrow \; \; \beta\leq 0 $ .As
$ \beta\neq 0 $ , the solution$ X_{0+} $ has positive values for any negative$ {\beta} $ . Therefore, in conclusion, we can say that for any non-zero real values of β, the solution$ X_{0+} $ is positive, and this represents a naked singularity.For the solution
$ X_{0-} $ to be positive, we have, for$ \beta>0 $ ,$ (U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)\geq \sqrt{(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}-\alpha)^{2}-8\beta{\cal{F}}({\cal{E}})/{\cal{G}}({\cal{E}})}\; \Rightarrow\; {\beta}\geq 0. $ For the same reason as explained above, here also,
$ {\beta}>0 $ , which implies that the solution is positive. Again for$ \beta<0 $ , we can get the positive solution following the same reason. Hence, we can conclude that this solution also represents a naked singularity. Finally, for$ \kappa=0 $ , we will get a naked singularity as the destiny of the collapse. Here, we would like to mention that the conditions for the positive solutions of Eq. (76) are of a similar type as in Heydarzade et al. [15].Case-II:
$ \kappa=1 $ : This condition represents the early stiff fluid [114] era of our universe. In this scenario Eq. (76) reduces to$ \begin{equation} -\alpha X_{0}^{3}+\beta X_{0}^{2}-(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})X_{0} +2\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}=0. \end{equation} $
(80) If we consider α, β,
$ U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2} $ ,$ {\cal{F}}({\cal{E}}) $ and$ {\cal{G}}({\cal{E}}) $ all to be positive, then by the well-known theorem of Descartes, also known as Descartes' Rule of Sign, the number of variations of the sign is 3. Which means the number of positive roots of Eq. (80) is either 1 or 3. The minimum number of positive roots being 1, we can announce that a naked singularity forms for$ \kappa=1 $ .It is noteworthy, for the case
$ \kappa>\dfrac{1}{2} $ , the energy conditions (50–52) are apparently violated in our case, and these energy conditions can be satisfied easily if we redefine the mass function$ {\cal{M}}(v, r) $ .Case-III:
$ \kappa=-1/2 $ : This represents the dark energy dominated accelerating universe. For$ {\kappa}=-1/2 $ , Eq. (76) is reduced to$ \begin{equation} \frac{\alpha}{2}+\beta X_{0}^{2}-(1+\mathbb{M}^{2}c_{2}c^{2}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})X_{0} +2\frac{{\cal{F}}({\cal{E}})}{{\cal{G}}({\cal{E}})}=0, \end{equation} $
(81) which bears the following solutions
$ \begin{aligned}[b] X_{0\pm}=&\frac{1}{2\beta}\Big[(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})\\&\pm\sqrt{(U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})^{2}-\frac{2\beta}{{\cal{G}}({\cal{E}})}\Big(4{\cal{F}}({\cal{E}})+\alpha {\cal{G}}({\cal{E}})\Big)}\Big].\; \; \; \; \end{aligned} $
(82) In this case, to get the real and finite solutions, we must have
$ \beta \neq 0 $ and$ (U-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2})^{2}\geq \dfrac{2\beta}{{\cal{G}}({\cal{E}})}(4{\cal{F}}({\cal{E}})+ \alpha {\cal{G}}({\cal{E}})) $ . Following the same procedure as for case-I, ensuring these solutions (82) are positive, we can show that for$ \beta>0 $ , we get the condition$ \alpha \dfrac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\geq -4 $ and for$ \beta<0 $ ,$ \alpha \dfrac{{\cal{G}}({\cal{E}})}{{\cal{F}}({\cal{E}})}\leq -4 $ . Due to the presence of the rainbow functions, the solutions we get here are different from those of Heydarzade et al. [15]. -
Using numerical methods, we will try to find a numerical solution for
$ X_{0} $ by considering the specific rainbow functions (77) in this subsection. The dynamics of collapse lies in the knowledge of$ X_{0} $ for the whole cosmologically meaningful region$ \kappa < 1 $ , i.e., from the early to the late universe, not only at discrete points of$ {\kappa} $ . So, we decide to visualize these solutions by obtaining various contours for$ {\kappa}-X_{0} $ for different numerical values of the involved parameters.Looking at the above figures, we get to know that the trajectories run across the positive range of
$ X_{0} $ , which is an indication of the formation of naked singularity (NS). Figure 1 (a) reveals the dependence of$ X_{0} $ on the equation of state (23) parameter (κ) for particular values of the massive gravity parameter$ {\mathbb{M}}(=2,3,5,7) $ with fixed$ \phi_{v0}^{2} $ . Also, from this figure, we see that with increasing$ \mathbb{M} $ the tendency of formation of an NS decreases. Therefore, we can say that the addition of graviton mass to this system with the specific choice of rainbow functions (77) deforms the dynamics of the system. In Fig. 1(b), we obtain the$ \kappa-X_{0} $ trajectories by varying the values of$ \alpha(=0.5,5,10,15) $ . In this figure, we see that, with greater values of$ {\alpha} $ , the tendency to form an NS is greater.Figure 1. (color online) Figs. (a) and (b) show the variation of
$ X_{0} $ with κ for different values of$ \mathbb{M} $ and α respectively (in Fig. (a), M is equal to$ \mathbb{M} $ ) with$ \phi_{v0}^{2}=0.7 $ ,$ E_{p}=1.221\times 10^{19} $ , and$ E_{1}=1.42\times 10^{-13} $ . In Fig. (a), the initial conditions are$ \alpha=0.5 $ ,$ \beta=2 $ ,$ c=2 $ , and$ c_{2}=2 $ , whereas in Fig. (b), the initial conditions are$ \mathbb{M}=2 $ ,$ \beta=2 $ ,$ c=2 $ , and$ c_{2}=2 $ .In Fig. 2(a), we observe how c affects the collapsing scenario. It is clear that for a greater value of
$ c(=2,3,5,10) $ , the tendency to form NS is lower. In Fig. 2(b), we can observe the effect of$ c_{2} $ on the collapsing system. Similar to that for c, we see that an increase in$ c_{2} $ decreases the possibility of NS.Figure 2. (color online) Figs. (a) and (b) show the variation of
$ X_{0} $ with$ {\kappa} $ for different values of c and$ c_{2} $ , respectively, with$ \phi_{v0}^{2}=0.7 $ ,$ E_{p}=1.221\times 10^{19} $ , and$ E_{1}=1.42\times 10^{-13} $ . In Fig. (a), the initial conditions are$ \mathbb{M}=2 $ ,$ \alpha=0.5 $ ,$ \beta=2 $ , and$ c_{2}=2 $ , whereas in Fig. (b), the initial conditions are$ \mathbb{M}=2 $ ,$ \alpha=0.5 $ ,$ \beta=2 $ , and$ c=2 $ .In Fig. 3, we have showed the effect of the kinetic energy (
$ \phi_{v0}^{2} $ ) of the k-essence scalar field on the collapsing scenario. It has been observed that all values of$ \phi_{v0}^{2} $ predict the same trajectories for the system and form the NS of the collapsing system. Here, we consider the restriction of$ \phi_{v0}^{2} $ not exceeding unity.Figure 3. (color online) Variation of
$ X_{0} $ with κ for different values of$ \phi_{v0}^{2} $ with$ E_{p}=1.221\times 10^{19} $ and$ E_{1}=1.42\times 10^{-13} $ and the initial conditions are$ \alpha=0.5 $ ,$ \beta=2.0 $ ,$ c=2.0 $ ,$ c2=2.0 $ and$\mathbb{M}=2.0.$ All the above observations and the corresponding discussions of the
$ \kappa-X_{0} $ trajectories make it clear that the trajectories reside in the positive$ X_{0} $ region, which assures the formation of a naked singularity from the collapse of this system. -
Taking the recommendation of [15, 63, 69, 115–117], we can conclude that a singularity
$ (r=v={\lambda}=0) $ would be strong if the following condition is satisfied$ \begin{equation} \lim\limits_{{\lambda}\to 0}{\lambda}^{2}\psi=\lim\limits_{{\lambda}\to 0}{\lambda}^{2}\bar{R}_{\mu\nu}K^{\mu}K^{\nu}>0, \end{equation} $
(83) where
$ \bar{R}_{\mu\nu} $ is the Ricci tensor and$ \psi=\bar{R}_{\mu\nu}K^{\mu}K^{\nu} $ is defined as a scalar of the k-essence emergent Vaidya massive gravity rainbow spacetime. We would like to mention that this scalar ψ is not the k-essence scalar field and is not coupled with the background gravitational metric$ g_{\mu\nu} $ . Stepping into the footsteps of [62, 69], with the conditions of (70), it can be shown that$ \begin{equation} \lim\limits_{{\lambda}\to 0}{\lambda}^{2}\psi={\cal{G}}^{2}({\cal{E}})\Big({\cal{M}}_{v0}\Big)\frac{1}{4}X_{0}^{2}>0. \end{equation} $
(84) So far we have seen that, if this condition is satisfied for some real and positive roots of
$ X_{0} $ , the naked singularity of the k-essence emergent Vaidya massive gravity rainbow spacetime is strong. In contrast, if there is no positive real root of$ X_{o} $ , we can conclude that no outgoing future directed null geodesics from the singularity exist, i.e., the collapse ends in a black hole.Now from the definition of
$ f_{1}(v) $ and$ f_{2}(v) $ and from (35), we have$ \begin{equation} {\cal{M}}_{v}=\frac{2{\kappa}{\alpha}}{1-2{\kappa}}\Big(\frac{v}{r}\Big)^{2{\kappa}-1}+{\beta}+2r{\cal{F}}^{2}({\cal{E}})\phi_{v}\phi_{vv}. \end{equation} $
(85) Thus, we have
$ \begin{equation} {\cal{M}}_{v0}=\frac{2{\kappa}{\alpha}}{1-2{\kappa}}X_{0}^{2{\kappa}-1}+{\beta}\equiv m_{v0}. \end{equation} $
(86) In the above three cases, i.e.,
$ {\kappa}=0 $ ,$ {\kappa}=1 $ , and$ {\kappa}=-1/2 $ , we have derived the positive roots of$ X_{0} $ for the respective conditions. Also, from Eq. (86), we observe the following situations for the above three cases:(i)
$ {\kappa}=0 $ and${ \cal{M}}_{v0}={\beta} $ , which is positive for any positive value of$ {\beta} $ ,(ii)
$ {\kappa}=1 $ and$ {\cal{M}}_{v0}={\alpha} X_{0}+{\beta} $ , where the positivity of${ \cal{M}}_{v0} $ implies that$ {\alpha} X_{0}+{\beta}>0 $ and(iii)
$ {\kappa}=-1/2 $ and$ {\cal{M}}_{v0}={\beta}-\frac{{\alpha}}{2X_{0}^{2}} $ , where the positive value of${ \cal{M}}_{v0} $ implies that$ 2{\beta} X_{0}^{2}>{\alpha} $ .With the above conditions and the specific rainbow functions (77), we see that
$ \lim\limits_{{\lambda}\to 0}{\lambda}^{2}\psi>0 $ . Therefore, it can be concluded that the naked singularity is strong under the above conditions. -
The authors in [67, 68] described the dynamical horizon (DH) on the basis of [118–122] in the context of k-essence geometry considering the Schwarzschild metric as the background metric. In contrast, in [62, 69], the authors described the apparent horizon (AH) for the generalized Vaidya type geometry. The AH is nothing but the boundary of the trapped surface region in the given spacetime (34). The casual behavior of the trapped surfaces developed in the spacetime during the collapse evolution decides the occurrence of a naked singularity or black hole.
We should remember that the AHs are not invariant properties of a spacetime and are distinct from event horizons (EHs). Within an AH, light does not move away from it. This is in contrast with the EH, where, in a dynamical spacetime, outgoing light rays exterior to an AH (but still interior to the EH) can exist. Specifically, an AH is a local notion of the boundary of a spacetime, whereas an EH is the global notion of a black hole.
-
The AH for the k-essence emergent Vaidya spacetime in massive gravity rainbow (34) can be represented as
$ \begin{eqnarray} \frac{{\cal{M}}(v,r)}{r}=1\Rightarrow \frac{m(v,r)}{r}+{\cal{F}}^{2}({\cal{E}})\phi_{v}^{2}=1, \end{eqnarray} $
(87) with
$ {\cal{F}}({\cal{E}})\neq 0 $ .Considering Refs. [62, 69], the slope of the AH at the central singularity (
$ r\rightarrow 0, v\rightarrow 0 $ ) can be written as$ \begin{eqnarray} \Bigg(\frac{{\rm d}v}{{\rm d}r}\Bigg)_{AH}=\frac{1-m_{r0}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}}{m_{v0}}=\frac{1+{\mathbb{M}}^{2}c_{2}c^{2}-{\cal{F}}^{2}({\cal{E}})\phi_{v0}^{2}}{\dot{f}_{20}(v)}, \end{eqnarray} $
(88) where we have used Eq. (72).
Now, the sufficient conditions for the existence of a locally naked singularity for the collapsing k-essence emergent Vaidya spacetime in massive gravity's rainbow have been attained. The emergent mass function
$ {\cal{M}}(v,r) $ obeys all the energy conditions and constraints mentioned in (50), (51), and (52). Also, as in [69], there exists an open set of parameter values for which the singularity is locally naked for the case of k-essence emergent Vaidya spacetime in massive gravity's rainbow.It is important not to forget that the k-essence emergent Vaidya spacetime in the massive gravity rainbow metric may exchange radiation with the surroundings, but the mass function (35) cannot totally evaporate due the presence of the massive gravity terms and the kinetic part of the k-essence scalar field, which is a function of v. As an example, in [68], the authors showed the decreasing nature of the black hole mass
$ m(v,r) $ in the k-essence emergent Schwarzschild Vaidya spacetime, but it does not completely vanish by using the DH equation as$ \phi_{v}^{2}\rightarrow 0^{+} $ .
Collapsing scenario for the k-essence emergent generalized Vaidya spacetime in the context of massive gravity's rainbow
- Received Date: 2022-05-14
- Available Online: 2022-12-15
Abstract: In this study, we investigate the collapsing scenario for the k-essence emergent Vaidya spacetime in the context of massive gravity's rainbow. For this study, we consider that the background metric is Vaidya spacetime in massive gravity's rainbow. We show that the k-essence emergent gravity metric closely resembles the new type of generalized Vaidya massive gravity metric with the rainbow deformations for null fluid collapse, where we consider the k-essence scalar field as a function solely of the advanced or the retarded time. The k-essence emergent Vaidya massive gravity rainbow mass function is also different. This new type k-essence emergent Vaidya massive gravity rainbow metric satisfies the required energy conditions. The existence of a locally naked central singularity and the strength and strongness of the singularities for the rainbow deformations of the k-essence emergent Vaidya massive gravity metric are the interesting outcomes of the present work.