-
Under the factorization hypothesis, the decay amplitude for
$ B\to h \chi_{c0} \to hK^+K^- $ is given by$ \begin{aligned}[b] \langle h(K^+K^-)_{\chi_{c0}} | \mathcal{H}_{\rm eff}| B \rangle \simeq& \langle K^+K^-|\chi_{c0}\rangle\frac{1}{\mathcal{D}_{\rm BW}} \langle h\chi_{c0} | \mathcal{H}_{\rm eff}| B \rangle \\ =&\frac{g_{\chi_{c0}K^+K^-}}{\mathcal{D}_{\rm BW}}\langle h\chi_{c0} | \mathcal{H}_{\rm eff}| B \rangle \\ =& C_{KK}(s)\cdot \mathcal{A}(s)\;, \end{aligned} $
(1) where the denominator
${\mathcal{D}_{\rm BW}}=m^2_0-s-{\rm i} m_0\Gamma(s)$ , the mass-dependent decay width$ \Gamma(s) $ is defined as$\Gamma(s)= \Gamma_0\dfrac{m_0}{\sqrt s}\left(\dfrac{q}{q_0}\right)^{2L_R+1}$ ,$ m_0=(3414.71\pm0.30) $ MeV and$\Gamma_0= (10.8\pm 0.6)$ MeV [7] are the pole mass and full width of the resonant state$ \chi_{c0} $ , respectively, and s is the invariant mass square for the$ K^+K^- $ pair in the final decay state.$ L_R $ denotes the spin of the resonances [27, 29]. In the rest frame of the resonant state$ \chi_{c0} $ , its daughter$ K^+ $ or$ K^- $ has the magnitude of the momentum,$q=\dfrac{1}{2}\sqrt{s-4m_K^2}$ , and$ q_0 $ in$ \Gamma(s) $ is the value of q at$ s=m^2_0 $ . By combining various contributions from relevant Feynman diagrams, as shown in Fig. 1, the amplitude$ \mathcal{A}(s)=\langle h\chi_{c0} | \mathcal{H}_{\rm eff}| B \rangle $ for the quasi-two-body decays considered in this study can be found, as presented in the Appendix. The mass-dependent coefficient$ C_{KK}(s) $ is$ g_{\chi_{c0}K^+K^-}/\mathcal{D}_{\rm BW} $ . We obtain the coupling constant$ g_{\chi_{c0}K^+K^-} $ from the relation [54, 55]Figure 1. Feynman diagrams for the spectator figure to
$ B_{(s)}\rightarrow h \chi_{c0}\rightarrow h\pi^+\pi^- $ and$ B_{(s)}\rightarrow h \chi_{c0}\rightarrow hK^+K^- $ .$ g_{\chi_{c0}K^+K^-}=\sqrt{\frac{8\pi m^2_0 \Gamma_{\chi_{c0}\to K^+K^-}}{q_0}}\;, $
(2) where
$ \Gamma_{\chi_{c0}\to K^+K^-} $ is the partial width for$ \chi_{c0}\to K^+K^- $ . For the process$ B\to h \chi_{c0} \to h\pi^+\pi^- $ , we must apply the replacement$ K\to \pi $ for Eqs. (1) and (2) and the relevant parameters. The effective Hamiltonian$ \mathcal{H}_{\rm eff} $ with four-fermion operators is the same as in Ref. [9].In the rest frame of the B meson, we choose its momentum
$ p_B $ and the momenta$ p_3 $ and p for the bachelor states h and$ \chi_{c0} $ as$ \begin{aligned}[b] p_B=&\frac{m_B}{\sqrt{2}}(1,1,{ 0_{\rm T}}), \quad\quad\;\; p_3=\frac{m_B}{\sqrt{2}}(0,1-\eta,{ 0_{\rm T}}), \\ p=&\frac{m_B}{\sqrt{2}}(1,\eta,{ 0_{\rm T}}),\quad\quad k_B=\left(0,\frac{m_B}{\sqrt{2}}x_B,k_{\rm BT}\right),\\ k_3=&\left(0,\frac{m_B}{\sqrt{2}}(1-\eta)x_3,k_{\rm 3T}\right),\quad k=\left(\frac{m_B}{\sqrt{2}}z,\frac{m_B}{\sqrt{2}}z\eta,k_{\rm T}\right), \end{aligned} $
(3) where
$ x_B $ ,$ x_3 $ , and z are the corresponding momentum fractions,$ m_B $ is the mass of the B meson, and the variable η is defined as$ \eta=s/m_B^2 $ , with the invariant mass square$ s=p^2 $ . For$ B^{+,0} $ and$ B^0_s $ in this study, we employ the same distribution amplitudes$ \phi_{B/B_s} $ as in Refs. [36, 56]. The wave functions for the bachelor states π and K in this study are written as$ \Phi_{h}(p,z)=\frac{1}{\sqrt{2N_c}}\gamma_5[\not p\phi^{A}(z)+ m_0^h\phi^{P}(z)+ m_0^h({\not n}{\not v}-1)\phi^{T}(z)], $
(4) where
$ m_0^h $ is the chiral mass, p and z are the momentum and corresponding momentum fraction, respectively, of π and k. The distribution amplitudes$ \phi^{A}(z) $ ,$ \phi^{P}(z) $ , and$ \phi^{T}(z) $ can be written as [57–60]$ \begin{aligned}[b] \phi^{A}(z)=&\frac{f_h}{2\sqrt{2N_c}}6z(1-z)[1+a_1^hC_1^{3/2}(t)\\&+a_2^hC_2^{3/2}(t)+a_4^hC_4^{3/2}(t)],\\ \phi^{P}(z)=&\frac{f_h}{2\sqrt{2N_c}}\bigg[1+\left(30\eta_3-\frac{5}{2}\rho_h^2\right)C_1^{1/2}(t)\\&-3\left[\eta_3\omega_3+\frac{9}{20}\rho_h^2(1+6a_2^h)\right]C_4^{1/2}(t)\bigg],\\ \phi^{T}(z)=&\frac{f_h}{2\sqrt{2N_c}}(1-2z)\bigg[1+6 \bigg(5\eta_3-\frac{1}{2}\eta_3\omega_3\\&-\frac{7}{20}\rho_h^2-\frac{3}{5}\rho_h^2a_2^h\bigg)(1-10z+10z^2)\bigg], \end{aligned} $
(5) where the Gegenbauer moments are chosen as
$ a_1^{\pi}=0 $ ,$ a_1^K=0.06 $ ,$ a_2^{\pi,K}=0.25\pm0.15 $ , and$ a_4^{\pi}=-0.015 $ , and the parameters follow$ \rho_{\pi}= m_{\pi}/m_{0}^{\pi} $ ,$ \rho_{K}= m_{K}/m_{0}^{K} $ ,$ \eta_3^{\pi,K}=0.015 $ , and$ \omega_3^{\pi,K}=-3 $ . We adopt$m_{0}^{\pi}=(1.4\pm0.1)\rm\;{GeV}$ and$m_{0}^{K}=(1.6\pm 0.1)\rm\;{GeV}$ in the numerical calculations. The Gegenbauer polynomials are defined as$ \begin{aligned}[b] C_1^{\frac{3}{2}}(t)=&3t,\quad C_2^{\frac{1}{2}}(t)=\frac{1}{2}(3t^{2}-1),\quad C_2^{\frac{3}{2}}(t)=\frac{3}{2}(5t^{2}-1),\\ C_4^{\frac{1}{2}}(t)=&\frac{1}{8}(3-30t^2+35t^4),\quad C_4^{\frac{3}{2}}(t)=\frac{15}{8}(3-30t^2+35t^4), \end{aligned} $
(6) where the variable
$ t=2z-1 $ . The mass-dependent$ \pi\pi $ or$ KK $ system, which comes from$ \chi_{c0} $ , has the distribution amplitude [9]$ \Phi_{\pi\pi(KK)}=\frac{1}{\sqrt{2N_c}}({\not p}\phi_{\pi\pi(KK)}^v(z)+\sqrt{s}\phi_{\pi\pi(KK)}^s(z)), $
(7) with the twist-2 and twist-3 distribution amplitudes
$ \phi_{\pi\pi(KK)}^v(z,s) $ and$ \phi_{\pi\pi(KK)}^s(z,s) $ $ \begin{aligned}[b] \phi_{\pi\pi(KK)}^v(z,s)=&\frac{F_{\chi_{c0}}(s)}{2\sqrt{2N_c}}27.46(1 - 2z)\left\{\frac{z(1 - z)[1-4z(1 - z)]}{[1-2.8z(1-z)]^2}\right\}^{0.7},\\ \phi_{\pi\pi(KK)}^s(z,s)=&\frac{F_{\chi_{c0}}(s)}{2\sqrt{2N_c}}4.73\left\{\frac{z(1-z)[1-4z(1-z)]}{[1-2.8z(1-z)]^2}\right\}^{0.7}. \end{aligned} $
(8) The timelike form factor
$ F_{\chi_{c0}}(z,s) $ is parameterized with the RBW line shape [61] and can be expressed as follows [62–64]:$ F_{\chi_{c0}}(s)=\frac{m^2_{0}}{m^2_{0}-s-{\rm i} m_{0}\Gamma_{(s)}}, $
(9) where
$ m_{0} $ is the pole mass. The mass-dependent decay width$ \Gamma_{(s)} $ is defined as$ \Gamma(s)=\Gamma_0\frac{m_0}{\sqrt s} (\frac{q}{q_0} )^{2L_R+1}. $
(10) $ L_R $ is the spin of the resonances, and$ L_R=0 $ for the scalar intermediate state$ \chi_{c0} $ . -
The differential branching ratios (
$ \mathcal B $ ) for the decay processes$ B\to h\pi^+\pi^-(K^+K^-) $ are$ \frac{{\rm d}\mathcal{B}}{{\rm d} s}=\tau_B\frac{q_h q }{64\pi^3m^3_B }{\overline{|C_{\pi\pi(KK)}\cdot\mathcal{A}}|^2}, $
(11) where
$ \tau_B $ is the lifetime of the B meson, and$ q_h $ is the magnitude momentum for the bachelor h in the rest frame of$ \chi_{c0} $ ,$ q_h=\frac{1}{2}\sqrt{\left[ (m_B^2-m_h^2)^2-2(m_B^2+m_h^2)s+s^2 \right]/s}\; , $
(12) with
$ m_h $ as the mass of h. The central values (in units of GeV) of the relevant mesons and quark masses are adopted as [7]$ \begin{aligned}[b]& m_{B}=5.279, \quad m_{B_s}=5.367,\quad m_{\pi^{\pm}}=0.140,\quad m_{\pi^0}=0.135,\\& m_{K^{\pm}}=0.494,\quad m_{K^0}=0.498,\quad m_{b}(pole)=4.8,\quad m_{c}=1.275. \end{aligned} $
(13) For the decay constants (in units of GeV) and lifetimes (in units of ps) of the relevant mesons, we use [7]
$ \begin{aligned}[b] f_{B}=&0.19, \quad f_{B_s}=0.227,\quad f_{\chi_{c0}}=0.36, \quad f_{\pi}=0.131,\\ f_{K}=&0.156, \quad\tau_{B^\pm}=1.638,\quad \tau_{B^0}=1.52,\quad \tau_{B_s}=1.51. \end{aligned} $
(14) The QCD scale follows
$ \Lambda_{\overline{MS}}^{(f=4)}=0.25{\rm GeV} $ . We adopt the Wolfenstein parameters$ (A,\overline{\lambda},\overline{\rho},\overline{\eta}) $ of the CKM mixing matrix,$ A=0.836\pm0.015 $ ,$ \overline{\lambda}=0.22453\pm0.00044 $ ,$ \overline{\rho}= 0.122^{+0.018}_{-0.017} $ , and$ \overline{\eta}=0.335^{+0.012}_{-0.011} $ [7]. For the shape parameter uncertainty of the$ B_{(s)} $ meson, we use$ \omega_B=0.4\pm0.04\,{\rm GeV} $ and$ \omega_{B_s}=0.5\pm0.05\,{\rm GeV} $ , which contribute the largest error for the branching fractions. The latter is from the Gegenbauer moments$ a_2^{h} $ in the bachelor meson distribution amplitudes. Two other errors originate from the decay width of the resonance$ \chi_{c0} $ and the chiral mass$ m_0^{h} $ of the bachelor meson, which have a smaller impact on the uncertainties in our approach. There are further errors that are small and can be safely ignored, such as minor and disregarded parameters in the bachelor meson$ (\pi/K) $ distribution amplitudes and Wolfenstein parameters.We calculate the branching ratios for the decays
$ B \rightarrow h\chi_{c0} \rightarrow h\pi^+\pi^-(K^+K^-) $ , as shown in Table 1, using the differential branching ratios in Eq. (4) and the decay amplitudes in the Appendix. We then compare and analyze our numerical results with current world average values from the PDG [7] and various theoretical predictions in PQCD, LCSR, and QCDF in Table 2.Mode Unit Branching ratios Data [7] $ B^+\rightarrow K^+\chi_{c0}\rightarrow K^+\pi^+\pi^- $ $ (10^{-6}) $ $ 0.81_{-0.22}^{+0.21}(\omega_B)_{-0.21}^{+0.12}(a_2)_{-0.05}^{+0.11}(\Gamma_{\chi_{c0}})_{-0.06}^{+0.06}(m_0^K) $ $ - $ $ B^+\rightarrow K^+\chi_{c0}\rightarrow K^+K^+K^- $ $ (10^{-6}) $ $ 0.84_{-0.24}^{+0.22}(\omega_B)_{-0.12}^{+0.08}(a_2)_{-0.08}^{+0.07}(\Gamma_{\chi_{c0}})_{-0.02}^{+0.02}(m_0^K) $ $ - $ $ B^0\rightarrow K^0\chi_{c0}\rightarrow K^0\pi^+\pi^- $ $ (10^{-6}) $ $ 1.21_{-0.32}^{+0.55}(\omega_B)_{-0.13}^{+0.27}(a_2)_{-0.10}^{+0.12}(\Gamma_{\chi_{c0}})_{-0.05}^{+0.01}(m_0^K) $ $ - $ $ B^0\rightarrow K^0\chi_{c0}\rightarrow K^0 K^+K^- $ $ (10^{-6}) $ $ 1.30_{-0.27}^{+0.32}(\omega_B)_{-0.16}^{+0.22}(a_2)_{-0.02}^{+0.01}(\Gamma_{\chi_{c0}})_{-0.04}^{+0.01}(m_0^K) $ $ - $ $ B_s^0\rightarrow \bar{K}^0\chi_{c0}\rightarrow \bar{K}^0\pi^+\pi^- $ $ (10^{-7}) $ $ 1.86_{-0.28}^{+0.41}(\omega_B)_{-0.22}^{+0.38}(a_2)_{-0.12}^{+0.14}(\Gamma_{\chi_{c0}})_{-0.04}^{+0.03}(m_0^K) $ - $ B_s^0\rightarrow \bar{K}^0\chi_{c0}\rightarrow \bar{K}^0 K^+K^- $ $ (10^{-7}) $ $ 2.45_{-0.61}^{+0.33}(\omega_B)_{-0.26}^{+0.39}(a_2)_{-0.23}^{+0.45}(\Gamma_{\chi_{c0}})_{-0.02}^{+0.02}(m_0^K) $ - $ B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+\pi^+\pi^- $ $ (10^{-8}) $ $ 3.93_{-0.70}^{+0.65}(\omega_B)_{-0.54}^{+0.40}(a_2)_{-0.21}^{+0.18}(\Gamma_{\chi_{c0}})_{-0.01}^{+0.01}(m_0^{\pi}) $ $<10 $ $ B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+K^+K^- $ $ (10^{-8}) $ $ 4.15_{-1.01}^{+0.89}(\omega_B)_{-0.60}^{+0.63}(a_2)_{-0.23}^{+0.24}(\Gamma_{\chi_{c0}})_{-0.02}^{+0.01}(m_0^{\pi}) $ $ - $ $ B^0\rightarrow \pi^0\chi_{c0}\rightarrow \pi^0\pi^+\pi^- $ $ (10^{-8}) $ $ 1.96_{-0.13}^{+0.32}(\omega_B)_{-0.28}^{+0.26}(a_2)_{-0.13}^{+0.16}(\Gamma_{\chi_{c0}})_{-0.00}^{+0.02}(m_0^{\pi}) $ $ - $ $ B^0\rightarrow \pi^0\chi_{c0}\rightarrow \pi^0 K^+K^- $ $ (10^{-8}) $ $ 2.06_{-0.36}^{+0.45}(\omega_B)_{-0.32}^{+0.30}(a_2)_{-0.10}^{+0.12}(\Gamma_{\chi_{c0}})_{-0.04}^{+0.01}(m_0^{\pi}) $ $ - $ Table 1. PQCD predictions of branching ratios for the quasi-two-body decays
$ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ .Mode Unit This study Data [7] PQCD LCSR QCDF $ B^+\rightarrow K^+\chi_{c0} $ $ (10^{-4}) $ $ 1.42_{-0.92}^{+0.78} $ $ 1.51_{-0.13}^{+0.15} $ $ 1.4^{+1.3}_{-0.9} $ [10]$ 1.0\pm0.6 $ [8]$ 1.05 $ [14]5.61[9] $ 0.78_{-0.35}^{+0.46} $ [15]$ B^0\rightarrow K^0\chi_{c0} $ $ (10^{-4}) $ $ 2.13_{-1.01}^{+1.54} $ $ 1.9\pm0.4 $ $ 1.3_{-0.8}^{+1.2} $ [10]- $ 1.13\sim5.19 $ [16]5.24[9] $ B_s^0\rightarrow \bar{K}^0\chi_{c0} $ $ (10^{-5}) $ $ 3.28_{-1.08}^{+1.51} $ $ - $ $ 4.3_{-3.0}^{+4.4}$ [10]$ - $ $ - $ $ B^+\rightarrow \pi^+\chi_{c0} $ $ (10^{-5}) $ $ 0.69_{-0.26}^{+0.22} $ $ - $ $ 0.36_{-0.24}^{+0.37} $ [10]$ - $ $ - $ $ B^0\rightarrow \pi^0\chi_{c0} $ $ (10^{-5}) $ $ 0.34_{-0.10}^{+0.13} $ $ - $ $ - $ $ - $ $ - $ Table 2. PQCD predictions of branching ratios for the two-body decays
$ B_{(s)}\rightarrow h\chi_{c0}[\chi_{c0} \rightarrow \pi^+\pi^-(K^+K^-)] $ .With the assumption that the reaction between the branching ratio of the quasi-two-body decay and the two-body framework satisfies
$ \mathcal{B}(B^+\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-)= \mathcal{B}(B^+\rightarrow h\chi_{c0})\cdot\mathcal{B}(\chi_{c0}\rightarrow \pi^+\pi^-) $ , we find the PQCD prediction of the branching ratio$\mathcal{B}(B^+\rightarrow K^+\chi_{c0})= $ $\dfrac{\mathcal{B}(B^+\rightarrow K^+\chi_{c0}\rightarrow K^+\pi^+\pi^-)}{\mathcal{B}(\chi_{c0}\rightarrow \pi^+\pi^-)}= (1.42_{-0.92}^{+0.78})\times10^{-4},$ and$\mathcal{B}(B^+\rightarrow K^+\chi_{c0})=\dfrac{\mathcal{B}(B^+ \rightarrow K^+\chi_{c0} \rightarrow K^+K^+K^-)}{\mathcal{B}(\chi_{c0}\rightarrow K^+K^-)}=(1.39_{-0.73}^{+0.54})\times 10^{-4},$ where the branching ratio$ \mathcal{B}(\chi_{c0}\rightarrow \pi^+\pi^-)= \dfrac{2}{3}\mathcal{B}(\chi_{c0}\rightarrow \pi\pi)= (5.67\pm0.22)\times10^{-3} $ , and$ \mathcal{B}(\chi_{c0}\rightarrow K^+K^-)= (6.05\pm 0.31)\times 10^{-3} $ [7]. The above two results predicted by PQCD agree well with the branching fractions$ (1.51_{-0.13}^{+0.15})\times10^{-4} $ for the two-body decays$ B^+\rightarrow K^+\chi_{c0} $ in Review of Particle Physics [7]. Our prediction for$\mathcal{B}(B^0\rightarrow K^0\chi_{c0})=(2.13_{-1.01}^{+1.54})\times 10^{-4}$ agrees with data, ($1.9\pm0.4)\times 10^{-4}$ , for the two-body decays$ B^0\rightarrow K^0\chi_{c0} $ [7].We compare the various theoretical predictions for the
$ B\rightarrow K\chi_{c0} $ cases of the investigated quasi-two-body and two-body decays. The LCSR calculations mainly focus on$ B^+\rightarrow K^+\chi_{c0} $ , and the prediction value is$ (1.0\pm0.6)\times 10^{-4} $ [8]. Compared with previous PQCD calculations [9, 10], we update the charmonium distribution amplitudes and several input parameters in this study. Our predictions are smaller than those of [9] and closer to those of [10]. QCDF suffers endpoint divergences caused by spectator amplitudes and infrared divergences resulting from vertex diagrams. The different treatment of these divergences, as mentioned in the Introduction, in [14–16] leads to different numerical results. Both our results in this study and the computations above are in excellent agreement with the available data for$ B^+\rightarrow K^+\chi_{c0} $ and$ B^0\rightarrow K^0\chi_{c0} $ .Now, we turn our attention to
$ B\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^- (K^+K^-) $ with$ h=\pi,\bar{K}^0 $ decay models. These decays, which proceed via a$ b \rightarrow dc\bar{c} $ quark transition, are Cabibbo-suppressed decays. The influence of$ SU(3) $ breaking on the distribution amplitudes offers a negative contribution to the decay, causing the branching ratio to be small. Experimentally, only the BaBar Collaboration reported the upper bound$ 0.1\times 10^{-6} $ on the branching ratio for$ B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+\pi^+\pi^- $ [65]. Our result is$ 3.93_{-1.46}^{+1.69}\times10^{-8} $ , which is inconsistent with the scope of the measured data by BaBar. The data for the decay modes$ B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+K^+K^- $ ,$ \sqrt{2}B^0\rightarrow \pi^0\chi_{c0}\rightarrow \pi^0\pi^+\pi^- $ , and$ \sqrt{2}B^0\rightarrow \pi^0\chi_{c0}\rightarrow \pi^0 K^+K^- $ are approximately$ 10^{-8} $ , which can be examined in forthcoming experiments. Because these Cabibbo-suppressed decays still receive less attention in other approaches, we await future comparisons.For the quasi-two-body processes
$ B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+\pi^+\pi^- $ and$ B^+\rightarrow K^+\chi_{c0}\rightarrow K^+\pi^+\pi^- $ , which have an identical step,$ \chi_{c0}\rightarrow \pi^+\pi^- $ , the difference of these two decay modes originates from the bachelor particles pions and kaons. Assuming factorization and flavor-$ SU(3) $ symmetry, the ratio$ R_{\chi_{c0}} $ for the branching fractions of these two processes is$ R_{\chi_{c0}}=\frac{\mathcal{B}(B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+\pi^+\pi^-)}{\mathcal{B}(B^+\rightarrow K^+\chi_{c0}\rightarrow K^+\pi^+\pi^-)}\approx \mid\frac{V_{cd}}{V_{cs}}\mid^2 \cdot \frac{f_{\pi}^2}{f_k^2}. $
(15) With the result
$ \mid \frac{V_{cd}}{V_{cs}}\mid \cdot \frac{f_{\pi}}{f_k}=0.189, $
(16) in Review of Particle Physics [7],
$ R_{\chi_{c0}}\approx 0.036 $ . This still meets the expectations from our PQCD anticipated ratio$ R_{\chi_{c0}}=\frac{\mathcal{B}(B^+\rightarrow \pi^+\chi_{c0}\rightarrow \pi^+\pi^+\pi^-)}{\mathcal{B}(B^+\rightarrow K^+\chi_{c0}\rightarrow K^+\pi^+\pi^-)}=0.049_{-0.009}^{+0.020}. $
(17) In Fig. 2, we show the distribution of branching ratios for the decays modes
$ B^+\rightarrow K^+\chi_{c0} \rightarrow K^+K^+K^- $ . The mass of$ \chi_{c0} $ is visible as a narrow peak near$ 3.414\,{\rm GeV} $ . We find that the central portion of the branching ratios lies in the region around the pole mass of the$ \chi_{c0} $ resonance, as shown by the distribution of the branching ratios in the$ \pi\pi $ invariant mass. -
The considered quasi-two-body decay amplitudes are given in the PQCD approach by
$ \mathcal{A}\left(B^+\rightarrow \pi^+[\chi_{c0}\rightarrow ]\pi^+\pi^-\right)=\frac{G_F}{\sqrt{2}}\left\{V_{cb}^*V_{cd} c_2 M_{e\pi}^{LL}-V_{tb}^*V_{td}\left[(c_4+c_{10})M_{e\pi}^{LL}+(c_6+c_8)M_{e\pi}^{SP}\right]\right\}, \tag{A1} $ $ \mathcal{A}\left(B^+\rightarrow K^+[\chi_{c0}\rightarrow ]\pi^+\pi^-\right)=\frac{G_F}{\sqrt{2}}\left\{V_{cb}^*V_{cs} c_2 M_{eK}^{LL}-V_{tb}^*V_{ts}\left[(c_4+c_{10})M_{eK}^{LL}+(c_6+c_8)M_{eK}^{SP}\right]\right\},\tag{A2} $
$ \mathcal{A}\left(B^0\rightarrow \pi^0[\chi_{c0}\rightarrow ]\pi^+\pi^-\right)=\frac{G_F}{\sqrt{2}}\left\{V_{cb}^*V_{cd} c_2 M_{e\pi}^{LL}-V_{tb}^*V_{td}\left[(c_4+c_{10})M_{e\pi}^{LL}+(c_6+c_8)M_{e\pi}^{SP}\right]\right\}, \tag{A3} $
$ \mathcal{A}\left(B^0\rightarrow K^0[\chi_{c0}\rightarrow ]\pi^+\pi^-\right)=\frac{G_F}{\sqrt{2}}\left\{V_{cb}^*V_{cs} c_2 M_{eK}^{LL} -V_{tb}^*V_{ts}\left[(c_4+c_{10})M_{eK}^{LL}+(c_6+c_8)M_{eK}^{SP}\right]\right\}, \tag{A4} $
$ \mathcal{A}\left(B_s^0\rightarrow \bar{K}^0[\chi_{c0}\rightarrow ]\pi^+\pi^-\right)=\frac{G_F}{\sqrt{2}}\left\{V_{cb}^*V_{cd} c_2 M_{eK}^{LL} -V_{tb}^*V_{td}\left[(c_4+c_{10})M_{eK}^{LL}+(c_6+c_8)M_{eK}^{SP}\right]\right\}, \tag{A5} $
where
$ G_F $ is the Fermi coupling constant,$ V^{,}\text{s} $ are the CKM matrix elements, and$ c_i $ are the Wilson coefficients. The amplitudes in the above equations are written as$ \begin{aligned}[b] M_{eK(\pi)}^{LL}=&-16\sqrt{\frac{2}{3}}\pi C_F m_B^4\int_0^1 {\rm d} x_B {\rm d} z {\rm d} x_3\int_0^\infty b_B {\rm d} b_B b_3 {\rm d} b_3\phi_B(x_B,b_B) \\ &\{[(\eta-1)(\sqrt{\eta}r\phi_{\pi\pi}^s(z)-(\eta+1)(x_B+z-1)\phi_{\pi\pi}^v(z))\phi^A(x_3)\\ &+r_3(4\sqrt{\eta}r\phi_{\pi\pi}^s(z)+(x_3-\eta(x_3+x_B+2z-2))\phi_{\pi\pi}^v(z))\phi^P(x_3)\\ &+r_3((\eta-1)x_3-\eta x_B)\phi_{\pi\pi}^v(z)\phi^T(x_3)]E_a(t_a)h_a(x_B,z,x_3;b_B,b_3)\\ &+[(\eta-1)(\sqrt{\eta}r\phi_{\pi\pi}^s(z)+((\eta-1)x_3+x_B-(\eta+1)z)\phi_{\pi\pi}^v(z))\phi^A(x_3)\\ &+r_3(4\sqrt{\eta}r\phi_{\pi\pi}^s(z)+(\eta(x_3+x_B-2z)-x_3)\phi_{\pi\pi}^v(z))\phi^P(x_3)\\ &+r_3((\eta-1)x_3-\eta x_B)\phi_{\pi\pi}^v(z)\phi^T(x_3)]E_b(t_b)h_b(x_B,z,x_3;b_B,b_3)\}, \end{aligned}\tag{A6} $
$ \begin{aligned}[b] M_{eK(\pi)}^{SP}=&-16\sqrt{\frac{2}{3}}\pi C_F m_B^4\int_0^1 {\rm d} x_B {\rm d} z {\rm d} x_3\int_0^\infty b_B {\rm d} b_B b_3 {\rm d} b_3\phi_B(x_B,b_B) \\ &\{[(\eta-1)(\sqrt{\eta}r\phi_{\pi\pi}^s(z)-((\eta-1)x_3+x_B+(\eta+1)(z-1))\phi_{\pi\pi}^v(z))\phi^A(x_3)\\ &+r_3(4\sqrt{\eta}r\phi_{\pi\pi}^s(z)+(x_3-\eta(x_3+x_B+2z-2))\phi_{\pi\pi}^v(z))\phi^P(x_3)\\ &-r_3((\eta-1)x_3-\eta x_B)\phi_{\pi\pi}^v(z)\phi^T(x_3)]E_a(t_a)h_a(x_B,z,x_3;b_B,b_3)\\ &+[(\eta-1)(\sqrt{\eta}r\phi_{\pi\pi}^s(z)+(\eta+1)(x_B-z)\phi_{\pi\pi}^v(z))\phi^A(x_3)\\ &+r_3(4\sqrt{\eta}r\phi_{\pi\pi}^s(z)+(\eta(x_3+x_B-2z)-x_3)\phi_{\pi\pi}^v(z))\phi^P(x_3)\\ &-r_3((\eta-1)x_3-\eta x_B)\phi_{\pi\pi}^v(z)\phi^T(x_3)]E_b(t_b)h_b(x_B,z,x_3;b_B,b_3)\}, \end{aligned}\tag{A7} $
with
$ r_c=m_c/m_B $ , and$ r_3=m_{0}^{h}/m_B $ . The evolution factors in the above formulas are given by$ \begin{array}{*{20}{l}} E_{a(b)}(t)=\alpha_s(t)\exp[-S_{ab}(t)]. \end{array} \tag{A8}$
The explicit expressions of the hard functions
$ h_{a(b)} $ , hard scales$ t_{a(b)} $ , and factor$ S_{ab}(t) $ are shown in the appendix of [66].
Resonance contributions from χc0 in charmless three-body hadronic B meson decays
- Received Date: 2022-11-01
- Available Online: 2023-04-15
Abstract: Within the framework of perturbative QCD factorization, we investigate the nonfactorizable contributions to the factorization-forbidden quasi-two-body decays