-
Currently, the STCF is in the research and design stage. The center-of-mass energy
$ (\sqrt{s}) $ designed for the STCF ranges from 2 to 7 GeV, with a peak luminosity of at least$ 0.5\times10^{35} $ cm$ ^{-2} $ s$ ^{-1} $ or higher at$ \sqrt{s}=4.0 $ GeV. Moreover, luminosity upgrade space will be left and the beam polarization operation of the second phase will be achieved. The STCF will serve as a crucial experiment to test the SM and study potential new physics.To manifest the expected high-precision with high-luminosity samples, the detector design of the STCF must meet the following requirements: a large coverage angle, high detection efficiency and good resolution of particles resulting in rapid triggering, and high radiation resistance. The preliminary design of the STCF detector mainly consists of a tracking system composed of inner and outer trackers, a particle identification (PID) system with
$ \pi/K $ and$ K/\pi $ misidentification of less than 2% with the PID efficiency of$ K/\pi $ over 97%, an electromagnetic calorimeter (EMC) with an excellent energy resolution and good position resolution, a super conducting solenoid, and a muon detector (MUD) that provides good$ \pi/\mu $ separation. Detailed requirements for each subdetector design can be found in Refs. [23, 24].A fast simulation software, specifically designed for STCF detectors, has been developed to investigate their physical potential and further optimize detector design [25]. Instead of simulating the objects in each subdetector using Geant4, the fast simulation models their response, including efficiency, resolution, and other factors used in data analysis, randomly sampling based on the size and shape of their performance. The performance of each subdetector for a given type of particle is described by empirical formulas. The scaling factor can be adjusted according to the performance limitations of the STCF detector, and these configurations can be easily interfaced. For this analysis, five groups of signal MC samples,
$ J/\psi \rightarrow \Lambda\bar{\Lambda} \rightarrow p \bar{p}\pi^{+}\pi^{-} $ , are generated according to the amplitude described in Sec. III and analyzed using the fast simulation package to investigate$ CP $ violation. Each group consists of$ 1.89 \times 10^8 J/\psi \rightarrow \Lambda \bar{\Lambda} $ events with the polarization rate of the electron beam ranging from 0 to 1, with a step size of 0.2. The obtained signal events are calculated using the following formula:$ \begin{equation} N_{\rm sig}=N_{J/\psi}\times \mathcal B_{J/\psi \rightarrow \Lambda\bar{\Lambda}}\times \mathcal B_{\Lambda\rightarrow p \pi^-} \times \mathcal B_{\bar{\Lambda}\rightarrow \bar{p} \pi^+}, \end{equation} $
(1) where
$N_{\rm sig}$ represents the number of signal events, and$ N_{J/\psi} $ represents the total number of$ J/\psi $ events as 0.1 trillion. Additionally,$ \mathcal B_{J/\psi \rightarrow \Lambda\bar{\Lambda}} $ ,$ \mathcal B_{\Lambda\rightarrow p \pi^{-}} $ , and$ \mathcal B_{\bar{\Lambda}\rightarrow \bar{p} \pi^{+}} $ denote the branching ratios of$ J/\psi \rightarrow \Lambda\bar{\Lambda} $ ,$ \Lambda\rightarrow p \pi^{-} $ , and$ \bar{\Lambda}\rightarrow \bar{p} \pi^{+} $ , with values of$ 1.89 \times 10^{-3} $ , 63.9%, and 63.9% [26], respectively. -
In electron-positron collision experiments, the polarization of the beam is reflected in the produced baryon-antibaryon pairs. The helicity frame is defined in Fig. 1. For the decay
$ J/\psi \rightarrow \Lambda\bar{\Lambda} $ , the$ \hat{z} $ axis follows the direction of the positron momentum. The$ \hat{z}_{1} $ axis is defined along the momentum vector of the Λ baryon, denoted by$ {p}_\Lambda $ =$ - {p}_{\bar{\Lambda}} $ =$ {p} $ in the center-of-mass system of the$ e^{+}e^{-} $ collision. The$ \hat{y}_{1} $ axis is perpendicular to the production plane and oriented along the vector$ {k}\; \times\; {p} $ , where$ {k}_{e^{-}} $ =$ - {k}_{e^{+}} $ =$ {k} $ is the momentum of the electron beam. The scattering angle of Λ is given by$ \cos\theta_{\Lambda} $ =$ \hat{ {p}} \cdot \hat{ {k}} $ , where$ \hat{ {p}} $ and$ \hat{ {k}} $ are unit vectors along the$ {p} $ and$ {k} $ directions, respectively.Figure 1. (color online) Definition of the coordinate system used to describe
$e^{+} e^{-} \rightarrow \Lambda\bar{\Lambda} \to p \bar{p}\pi^{+}\pi^{-}$ .The general expression for the joint density matrix of a
$ \Lambda\bar{\Lambda} $ pair is [27]$ \begin{equation} \rho_{\Lambda\bar{\Lambda}}=\sum\limits_{{\mu\upsilon}=0}^{3}{C}_{\mu\upsilon}\sigma_{\mu}^{\Lambda}\otimes\sigma_{\upsilon}^{\bar{\Lambda}}, \end{equation} $
(2) where a set of four Pauli matrices
$ \sigma_{\mu}^{\Lambda} $ ($ \sigma_{\upsilon}^{\bar{\Lambda}} $ ) in the Λ($ \bar{\Lambda} $ ) rest frame is used, and$ {C}_{\mu\upsilon} $ is a$ 4 \times 4 $ real matrix representing the polarization and spin correlations of the baryons. The elements of the$ {C}_{\mu\upsilon} $ matrix are functions of the production angle θ of the Λ baryon [28],$ \begin{equation} \begin{bmatrix} 1+\alpha_{\psi}\cos^{2}\theta &\gamma_{\psi}P_{e}\sin\theta& \beta_{\psi} \sin \theta \cos \theta &(1+\alpha_{\psi})P_{e}\cos \theta\\ \gamma_{\psi}P_{e}\sin\theta & \sin^{2} \theta & 0 &\gamma_{\psi}\sin \theta \cos \theta\\ - \beta_{\psi} \sin\theta \cos\theta& 0 &\alpha_{\psi}\sin^{2}\theta &-\beta_{\psi}P_{e}\sin\theta\\ -(1+\alpha_{\psi})P_{e}\cos\theta&-\gamma_{\psi}\sin \theta\cos\theta&-\beta_{\psi}P_{e}\sin\theta&-\alpha_{\psi}-\cos^{2}\theta \end{bmatrix}, \end{equation} $
(3) where
$ \beta_{\psi}=\sqrt{1-\alpha_{\psi}^{2}} \sin \Delta\Phi $ ,$ \gamma_{\psi}=\sqrt{1-\alpha_{\psi}^{2}} \cos \Delta \Phi $ ,$ \alpha_{\psi}^{2}+ \beta_{\psi}^{2}+ \gamma_{\psi}^{2}=1 $ , and$ P_{e} $ is the polarization of the electron beam. Two factors are naturally connected to the process of the ratio of two helicity amplitudes$ \alpha_{\psi} $ and the relative phase of the two helicity amplitudes$ \Delta\Phi $ in the real coefficients$ {C}_{\mu\upsilon} $ of Eq. (3). The joint angular distribution of the$ p/\bar{p} $ pair within the current formalism is described as follows [27]:$ \begin{align} {\rm T_{r}}\rho_{p\bar{p}}\propto\sum\limits_{{\mu\upsilon}=0}^{3}\alpha_{\mu}^{\Lambda}\alpha_{\upsilon}^{\bar{\Lambda}}, \end{align} $
(4) where
$ \alpha_{\mu}^{\Lambda}(\theta_{1},\; \varphi_{1},\; \alpha_{-}) $ and$ \alpha_{\upsilon}^{\bar{\Lambda}}(\theta_{2},\; \varphi_{2},\; \alpha_{+}) $ represent the correlations of the spin density matrices in the sequential decays, the full expressions for which can be found in [27], and$ \alpha_{-}(\alpha_{+}) $ are the decay parameters for$ \Lambda \rightarrow p \pi^{-} $ ($ \bar{\Lambda} \rightarrow \bar{p}\pi^{+} $ ). In the helicity frame of Λ,$ \theta_{1} $ and$ \varphi_{1} $ are the spherical coordinates of p relative to Λ. An event of the reaction$ J/\psi \rightarrow \Lambda\bar{\Lambda} \rightarrow p \bar{p}\pi^{+}\pi^{-} $ is specified by the five dimensional vector$ \xi=(\theta,\; \Omega_{1}(\theta_{1},\; \varphi_{1}),\; \Omega_{2}(\theta_{2},\; \varphi_{2})) $ , and the joint angular distribution$ \mathcal{W}(\xi) $ can be expressed as$ \begin{aligned}[b] \mathcal{W}(\xi)=& \mathcal{F}_{0}(\xi)+\sqrt{1-\alpha_{\psi}^{2}}\sin(\Delta\Phi)(\alpha_+\cdot\mathcal{F}_{3}-\alpha_-\cdot\mathcal{F}_{4}) \\ &+\alpha_-\alpha_+(\mathcal{F}_{1}+\sqrt{1-\alpha_{\psi}^{2}}\cos(\Delta\Phi)\cdot\mathcal{F}_{2}+\alpha_{\psi}\cdot\mathcal{F}_{5}) \\ & +\alpha_-\cdot\mathcal{F}_{6}+\alpha_+\cdot\mathcal{F}_{7}-\alpha_-\alpha_+\cdot\mathcal{F}_{8}, \end{aligned} $
(5) where the angular functions
$ \mathcal{F}_{i}(\xi) $ (i = 0, 1,..., 8) are defined as$ \begin{aligned} &\mathcal{F}_{0}(\xi)=1+\alpha_{\psi}\cos^{2}\theta,\\ &\mathcal{F}_{1}(\xi)=\sin^{2}\theta \sin\theta_{1}\cos\varphi_{1}\sin\theta_{2}\cos\varphi_{2}-\cos^{2}\theta\cos\theta_{1}\cos\theta_{2},\\ &\mathcal{F}_{2}(\xi)=\sin\theta \cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\varphi_{1}-\cos\theta_{1}\sin\theta_{2}\cos\varphi_{2}),\\ &\mathcal{F}_{3}(\xi)=\sin\theta \cos\theta \sin\theta_{2}\sin\varphi_{2},\\ &\mathcal{F}_{4}(\xi)=\sin\theta \cos\theta \sin\theta_{1}\sin\varphi_{1},\\ &\mathcal{F}_{5}(\xi)=\sin^{2}\theta \sin\theta_{1}\sin\varphi_{1}\sin\theta_{2}\sin\varphi_{2}-\cos\theta_{1}\cos\theta_{2},\\ &\mathcal{F}_{6}(\xi)=P_{e}(\gamma_{\psi}\sin\theta \sin\theta_{1}\cos\varphi_{1}-(1+\alpha_{\psi})\cos\theta \cos\theta_{1}), \\ &\mathcal{F}_{7}(\xi)=P_{e}(\gamma_{\psi}\sin\theta \sin\theta_{2}\cos\varphi_{2}+(1+\alpha_{\psi})\cos\theta \cos\theta_{2}), \\ &\mathcal{F}_{8}(\xi)=P_{e}\beta_{\psi}\sin\theta(\cos\theta_{1}\sin\theta_{2}\sin\varphi_{2}+\sin\theta_{1}\sin\varphi_{1}\cos\theta_{2}). \end{aligned} $
(6) Eq. (5) contains four terms:
$ \mathcal{F}_{0} $ describes the angular distribution of Λ, and$ \mathcal{F}_{3} $ and$ \mathcal{F}_{4} $ account for the transverse polarization of Λ and$ \bar{\Lambda} $ , respectively. The spin correlations between the two hyperons are described by$ \mathcal{F}_{1} $ ,$ \mathcal{F}_{2} $ , and$ \mathcal{F}_{5} $ . The terms$ \mathcal{F}_{6} $ ,$ \mathcal{F}_{7} $ , and$ \mathcal{F}_{8} $ describe the beam polarization. In Eq. (5), the input values of$ \alpha_{-} $ ,$ \alpha_{+} $ ,$ \alpha_{\psi} $ , and$ \Delta\Phi $ are all from Ref. [18]. A study is conducted on the observable$ A_{CP} $ , which represents the magnitude of$ CP $ violation, under different polarization rates.$ A_{CP} $ is defined as$ A_{CP}=\frac{\alpha_{-}+\alpha_{+}}{\alpha_{-}-\alpha_{+}} $ . Using the maximum likelihood to fit the angular distribution of Eq. (5),$ \alpha_{-} $ and$ \alpha_{+} $ can be extracted and$ A_{CP} $ can be calculated. Experimentally, statistical error plays a dominant role in assessing the magnitude of$ CP $ violation. Hence, this study primarily investigates the statistical error associated with the magnitude of$ CP $ violation under different polarization rates.The Λ polarization vector
$ \mathbf{P_{\Lambda}} $ is defined in the rest frame of Λ, as shown in Ref. [28]:$ \begin{align} \mathbf{P_{\Lambda}}=\frac{\gamma_{\psi} P_{e}\sin\theta\hat{x}_{1}-\beta_{\psi} \sin\theta \cos\theta\hat{y}_{1}-(1+\alpha_{\psi})P_{e}\cos\theta\hat{z}_{1}}{1+\alpha_{\psi}\cos^{2}\theta}. \end{align} $
(7) The distribution of the module of
$ \left|\mathbf{P_{\Lambda}}\right| $ against the polar angle of Λ is determined, as shown in Fig. 2.Figure 2. (color online) Distribution of
$\mathbf{P_{\Lambda}}$ against$\cos\theta$ . The red circles, green squares, and pink triangles represent the three cases of electron beam polarization 0, 0.8, and 1.0, respectively.The relationship between electron beam polarization and the polarization of Λ can be described by the following formula [28]:
$ \begin{aligned}[b] \left \langle \mathbf{P_{\Lambda}} \right \rangle=&\frac{(1-\alpha_{\psi}^{2})\sin^{2}(\Delta\Phi)}{\alpha_{\psi}^{2}(3+\alpha_{\psi})}\Bigg(3+2\alpha_{\psi}-3(1+\alpha_{\psi})\frac{\arctan\sqrt{\alpha_{\psi}}}{\sqrt{\alpha_{\psi}}}\Bigg)\\&+ \frac{3(1+\alpha_{\psi})^{2}}{\alpha_{\psi}(3+\alpha_{\psi})}\left(1-\frac{1-\alpha_{\psi}}{1+\alpha_{\psi}}\cos^{2}(\Delta\Phi)\frac{\arctan\sqrt{\alpha_{\psi}}}{\sqrt{\alpha_{\psi}}}\right)P^{2}_{e} . \end{aligned} $
(8) Figure 3 provides an intuitive representation of the relationship between the polarization of Λ and the polarization of the electron beam.
-
Based on the joint angular distribution, a maximum likelihood fit is performed with four free parameters (
$ \alpha_{\psi} $ ,$ \alpha_{-} $ ,$ \alpha_{+} $ , and$ \Delta\Phi $ ). The joint likelihood function, as defined in Ref. [29] and shown in Eq. (9), is used for this purpose.$ \begin{aligned}[b] \mathcal{L}=&\prod\limits_{i=1}^{N}\mathcal{P}(\xi^{i}, \alpha_{\psi}, \alpha_-, \alpha_+, \Delta\Phi)\\=&\prod\limits_{i=1}^{N}\mathcal{C}\mathcal{W}(\xi^{i}, \alpha_{\psi},\alpha_-, \alpha_+, \Delta\Phi)\epsilon(\xi^{i}), \end{aligned} $
(9) The probability density function of the kinematic variable
$ \xi^{i} $ for event i, denoted as$ \mathcal{P}(\xi^{i},\; \alpha_{\psi},\; \alpha_{-},\; \alpha_{+},\; \Delta\Phi) $ , is used in the maximum likelihood fit. The fit is performed using Eq. (6), where$ \mathcal{W}(\xi^{i},\; \alpha_{\psi},\; \alpha_{-},\; \alpha_{+},\; \Delta\Phi) $ represents the weights assigned to each event. The detection efficiency is represented by$ \epsilon(\xi^{i}) $ , and N denotes the total number of events. The normalization factor, denoted as$\mathcal{C}^{-1} =\frac{1}{N_{\rm MC}}\sum\limits^{N_{\rm MC}}_{j=1}\mathcal{W}(\xi^{j},\; \alpha_{\psi},\; \alpha_{-}, \; \alpha_{+},\; \Delta\Phi)\epsilon(\xi^{j})$ , estimates the$ N_{\rm MC} $ events generated with the phase space model, which is approximately ten times the size of mDIY MC. Usually, the minimization of$ -{\rm ln}\mathcal{L} $ is performed using MINUIT [30]:$ \begin{align} -{\rm ln}\mathcal{L}=-\sum\limits^{N}_{i=1}{\rm ln}\mathcal{C}\mathcal{W}(\xi^{i},\alpha_{\psi},\alpha_-,\alpha_+,\Delta\Phi)\epsilon(\xi^{i}) . \end{align} $
(10) In this analysis, we extrapolate the sensitivity of
$ CP $ violation for a large number of$ J/\psi $ events generated at the future STCF, considering the effects of excessive disk pressure. This extrapolation is based on the relationship between the sensitivity of$ CP $ violation and the generated 0.1 trillion$ J/\psi $ events. We investigate this relationship using a sample size ranging from 0.01 to 0.1 trillion$ J/\psi $ , with a step size of 0.01 trillion$ J/\psi $ . The sensitivity analysis is presented in Fig. 7, where we examine the impact of event statistics on the sensitivity of$ CP $ violation. The sensitivity can be described using the following formula:Figure 7. (color online) Blue dots represent the statistical errors on
$CP$ violation, and the black line is fit using Eq. (11).$ \begin{equation} \sigma_{A_{CP}}\times\sqrt{N_{\rm fin}}=k. \end{equation} $
(11) The variable
$N_{\rm fin}$ represents the number of events that pass the final selection criteria, and k is a constant with a value of 7.82.As shown in Fig. 7, the sensitivity of statistical errors increases proportionally with the square root of the number of signal events. This observation provides a foundation for extrapolating
$ CP $ violation sensitivity from the size of the data sample.Five different beam polarizations are utilized to generate a sample of 0.1 trillion MC events, with the specific aim of investigating the quantity
$ \sigma_{A_{CP}} $ . The resulting five sets of data points are fit using Eq. (12) [28]:$ \begin{equation} \sigma_{A_{CP}}\approx \sqrt{\frac{3}{2}} \frac{1}{\alpha_-\sqrt{N_{\rm sig}}\sqrt{\left \langle P_{\Lambda}^{2} \right \rangle}}. \end{equation} $
(12) Under the same sample size, the obtained results align with those in Ref. [31], maintaining consistency at the order of magnitude level. By extrapolating the number of
$ J/\psi $ events based on the 3.4 trillion events expected to be generated annually by the future STCF, as demonstrated in Figs. 7 and 8, it is apparent that the statistical sensitivity of$ CP $ violation will reach the order of$ \mathcal O (10^{-5}) $ at a beam polarization of 80%.
Prospects of CP violation in Λ decay with a polarized electron beam at the STCF
- Received Date: 2023-06-28
- Available Online: 2023-11-15
Abstract: Based on