ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(I)
- Received Date: 1978-12-08
- Accepted Date: 1900-01-01
- Available Online: 1980-02-05
Abstract: In this paper, we analyse the commutation relations of the infintesimal opera-tors of the group SU3 and find that the eight infinitesimal operators of the groupSU3 can be written as a scalar operator A, three angular momentum operators (L1,Lo, L-1,)and two sets of the irreducible tensor operators of rank 1/2, (T±1/2,V±1/2)By means of the commutation relations of these operators, all irreducible represen-tations of the group SU3 can be easily obtained. In this pape, the matrices corresponding to these operators in the irreduciblerepresentation(λμ), are given; therefore the irreducible representation and its re-presentation space Rλμ are completely defined. Besides, a method for calculatingthe scalar factors of the reduction coefficients and the symmetric relations of thosefactors are also given. As examples, the scalar factors of the reduction coefficientsof (λμ)×(10), (λμ)×(01), (λμ)×(20) and (λμ)×(11) are calculated. In the last part of this paper, we define the irreducible tensor operators ofthe group SU3 and prove the corresponding Wigner-Eckart theory. The method used in the discussion of the group SU3 be extended to allof the compact simple Lie groups of rank 2 and we shall discuss them in two suc-ceeding papers.