High-Spin Excitations of Atomic Nuclei
- Received Date: 2004-12-30
- Accepted Date: 1900-01-01
- Available Online: 2004-04-02
Abstract: We used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. We focus the collective rotations of the A~50, 80 and 110 nuclei. The A~50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≈80 N≈Z nuclei show rich shape coexistences with prolate and oblate rotational bands. The A≈110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, we used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A~130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. We predicted some important high-K isomers, e.g., the 8- isomers in the unstable nuclei of 140Dy and 188Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei.