The Extention of Berry's Theory on Geometric Phase

  • To the cyclic Hamiltonian system, where we have done the parameter transition t→R(t), we study the problem of the acquirement of Berry geometric phase γn (C) by the "strict" evolution from the non-adiabatic to the adiabatic-limit. Our results show that there exist four types of evolution states, all of which can satisfy the above "strict" evolution along the same closed curve C in the space formed by the parameter R and can obtain the same Berry geometric phase γn(C). When Berry first found the geometric phase γn(C), he only considered one evolution state, which is just the adiabatic approximation case of one of the four "strict" evolution states mentioned above. So Berry's theory on geometric phase can be extended into the four types of strict evolution shown in this paper.
  • 加载中
  • [1] Berry M V. Proc. Rog. Soc. Loud. 1984, A392:45─57 2 Suter D, Mueller K T, Pines A. Phys.Rev. Lett, 1988, 60(13):1218—12203 Tycko R. Phys. Rev. Lett., 1987, 58(22):2281—2284 4 Bitter T, Dubbers D. Phys. Rev. Lett. 1987, 59(3):251—254 5 Richardson D J, kilvington A et al. Phys. Rev. Lett., 1988, 61(18):2030—2033 6 Chiao R Y, Wu Y S. Phys. Rev. Lett., 1986, 57(8):933—936; Tomita A, Chiao R Y. Phys. Rev. Lett., 1986, 57(8):937—940: Simon R, Kimble H J, Sudarshan E C G. Phys. Rev. Lett., 1988, 61(1): 19─22; Breuer H P,Dietz K,Holthaus M.Phys. Rev., 1993, A47(1);725—7287 Zygelman B.Phys.Rev. Lett., 1990, 64(3):256—259; Mead C A.Phys.Rev. Lett., 1987, 59(2): 161—164; Moody J, Shapers A, Wilczek F. Phys. Rev. Lett., 1986, 56(9):893—896; Delacretaz G, Grant E R et al. Phys. Rev. Lett., 1986; 56(24):2598─2601 8 Zak J. Phys. Rev., 1989, B40(5):3156─316; Bird D M, Preston A R. Phys. Rev. Lett., 1988, 61(25): 2863—28669 Li H Z. Phys. Rev. Lett., 1987, 58(6):539─542; Isler K, Paranjape M B. Phys. Rev., 1990, D41(2):561─563 10 Mikam R S,Ring P. Phys.Rev. Lett., 1987, 58(10):980─983; Mikam R S, Ring P et al. Phys. Lett., 1990, B35(3,4):215─220; Liang J Q. Phys. Lett., 1989, A142(1):11—13 11 Samuel J, Bhandari R. Phys. Rev. Lett., 1988; 60(23):2339─2342; Jordan T F. Phys. Rev., 1988, A38(3): 1590—159212 Aharonov Y,Anandan J. Phys.Rev. Lett., 1987, 58(16): 1593—159613 Dittrich W,Reuter M.Classical and Quantum Dynamics.Springer–Verlag,Berlin:2nd Edltion 1994:301—306 14 Ni G J,Chen S Q,Shen Y L. Phys.Lett., 1995, A197: 100—10615 Chen S Q, Ni G J. Phys. Lett., 1993, A178:339—341
  • 加载中

Get Citation
Zhang Zhongcan, Fang Zhenyun, Hu Chenguo and Sun Shijun. The Extention of Berry's Theory on Geometric Phase[J]. Chinese Physics C, 1999, 23(10): 980-991.
Zhang Zhongcan, Fang Zhenyun, Hu Chenguo and Sun Shijun. The Extention of Berry's Theory on Geometric Phase[J]. Chinese Physics C, 1999, 23(10): 980-991. shu
Milestone
Received: 1998-04-28
Revised: 1900-01-01
Article Metric

Article Views(4130)
PDF Downloads(571)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

The Extention of Berry's Theory on Geometric Phase

    Corresponding author: Zhang Zhongcan,
  • Phvsics Department of College of Science of Chongqing University, Chongqung 400044

Abstract: To the cyclic Hamiltonian system, where we have done the parameter transition t→R(t), we study the problem of the acquirement of Berry geometric phase γn (C) by the "strict" evolution from the non-adiabatic to the adiabatic-limit. Our results show that there exist four types of evolution states, all of which can satisfy the above "strict" evolution along the same closed curve C in the space formed by the parameter R and can obtain the same Berry geometric phase γn(C). When Berry first found the geometric phase γn(C), he only considered one evolution state, which is just the adiabatic approximation case of one of the four "strict" evolution states mentioned above. So Berry's theory on geometric phase can be extended into the four types of strict evolution shown in this paper.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return