Bi-dimension Position Sensitive Detector Used in the Study of Fusion Fission of Heavy Ions at the Sub-Coulomb Barrier Energy Region

Get Citation
Tan Jilian, Zhang Jinxia, Jin Genming, Zhang Huanqiao, Qian Xing, Liu Zuhua and Xu Jincheng. Bi-dimension Position Sensitive Detector Used in the Study of Fusion Fission of Heavy Ions at the Sub-Coulomb Barrier Energy Region[J]. Chinese Physics C, 1997, 21(S2): 1-8.
Tan Jilian, Zhang Jinxia, Jin Genming, Zhang Huanqiao, Qian Xing, Liu Zuhua and Xu Jincheng. Bi-dimension Position Sensitive Detector Used in the Study of Fusion Fission of Heavy Ions at the Sub-Coulomb Barrier Energy Region[J]. Chinese Physics C, 1997, 21(S2): 1-8. shu
Milestone
Received: 1995-12-12
Article Metric

Article Views(598)
PDF Downloads(4)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Bi-dimension Position Sensitive Detector Used in the Study of Fusion Fission of Heavy Ions at the Sub-Coulomb Barrier Energy Region

  • 1. Institute of Modem Physics, The Chinese Academy of Sciences, Lanzhou, China;
  • 2. China Institute of Atomic Energy, Beijing, China

Abstract: The structure, operation principle, and performance of the bi-dimension position sensitive avalanche chamber (BPAC) used in the study of fusion fission induced by heavy ions at the near- and sub-barrier energy regions are described.
The fold angle distribution of fragments in different angle regions for the 84 MeV (Ecm) 16O+232Th reaction system was obtained by using BPAC, from which the angle distribution of transfer-fission fragments has been distinguished from that of compound nucleus fission fragments. It is thereby certified that transfer Hssion is not the reason for anomalous anisotropies of fragment angular distribution. Meanwhile experimental results supported the pre-equilibrium fission model, in the frame of which the anomalous anisotropies of fragment distribution were explained.

    HTML

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return